Monte Carlo–Based Financial Market Value-at-Risk Estimation on GPUs

Author(s):  
Matthew F. Dixon ◽  
Thomas Bradley ◽  
Jike Chong ◽  
Kurt Keutzer
2021 ◽  
Vol 17 (3) ◽  
pp. 370-380
Author(s):  
Ervin Indarwati ◽  
Rosita Kusumawati

Portfolio risk shows the large deviations in portfolio returns from expected portfolio returns. Value at Risk (VaR) is one method for determining the maximum risk of loss of a portfolio or an asset based on a certain probability and time. There are three methods to estimate VaR, namely variance-covariance, historical, and Monte Carlo simulations. One disadvantage of VaR is that it is incoherent because it does not have sub-additive properties. Conditional Value at Risk (CVaR) is a coherent or related risk measure and has a sub-additive nature which indicates that the loss on the portfolio is smaller or equal to the amount of loss of each asset. CVaR can provide loss information above the maximum loss. Estimating portfolio risk from the CVaR value using Monte Carlo simulation and its application to PT. Bank Negara Indonesia (Persero) Tbk (BBNI.JK) and PT. Bank Tabungan Negara (Persero) Tbk (BBTN.JK) will be discussed in this study.  The  daily  closing  price  of  each  BBNI  and BBTN share from 6 January 2019 to 30 December 2019 is used to measure the CVaR of the two banks' stock portfolios with this Monte Carlo simulation. The steps taken are determining the return value of assets, testing the normality of return of assets, looking for risk measures of returning assets that form a normally distributed portfolio, simulate the return of assets with monte carlo, calculate portfolio weights, looking for returns portfolio, calculate the quartile of portfolio return as a VaR value, and calculate the average loss above the VaR value as a CVaR value. The results of portfolio risk estimation of the value of CVaR using Monte Carlo simulation on PT. Bank Negara Indonesia (Persero) Tbk and PT. Bank Tabungan Negara (Persero) Tbk at a confidence level of 90%, 95%, and 99% is 5.82%, 6.39%, and 7.1% with a standard error of 0.58%, 0.59%, and 0.59%. If the initial funds that will be invested in this portfolio are illustrated at Rp 100,000,000, it can be interpreted that the maximum possible risk that investors will receive in the future will not exceed Rp 5,820,000, Rp 6,390,000 and Rp 7,100,000 at the significant level 90%, 95%, and 99%


2020 ◽  
Vol 90 (10) ◽  
pp. 1735-1752
Author(s):  
M. Ivette Gomes ◽  
Frederico Caeiro ◽  
Fernanda Figueiredo ◽  
Lígia Henriques-Rodrigues ◽  
Dinis Pestana

Author(s):  
Jike Chong ◽  
Kurt Keutzer ◽  
Matthew Francis Dixon

2017 ◽  
Vol 11 (1) ◽  
pp. 91-106 ◽  
Author(s):  
Mahsa Gorji ◽  
Rasoul Sajjad

2015 ◽  
Vol 4 (1and2) ◽  
pp. 28
Author(s):  
Marcelo Brutti Righi ◽  
Paulo Sergio Ceretta

We investigate whether there can exist an optimal estimation window for financial risk measures. Accordingly, we propose a procedure that achieves optimal estimation window by minimizing estimation bias. Using results from a Monte Carlo simulation for Value at Risk and Expected Shortfall in distinct scenarios, we conclude that the optimal length for the estimation window is not random but has very clear patterns. Our findings can contribute to the literature, as studies have typically neglected the estimation window choice or relied on arbitrary choices.


Sign in / Sign up

Export Citation Format

Share Document