EFFECT OF ACUTE MURINE HEPATITIS (MHV-A-59) ON ETHANOL OXIDATION IN VIVO

Author(s):  
E.A. Carter ◽  
J.R. Wands ◽  
K.J. Isselbacher
Keyword(s):  
1972 ◽  
Vol 33 (3) ◽  
pp. 751-755 ◽  
Author(s):  
Mary K. Roach ◽  
Myrna Khan ◽  
Marguerite Knapp ◽  
W. N. Reese

1987 ◽  
Vol 65 (5) ◽  
pp. 458-466 ◽  
Author(s):  
S. Cheema-Dhadli ◽  
F. A. Halperin ◽  
K. Sonnenberg ◽  
V. MacMillan ◽  
M. L. Halperin

The purpose of these experiments was to examine the factors which regulate ethanol metabolism in vivo. Since the major pathway for ethanol removal requires flux through hepatic alcohol dehydrogenase, the activity of this enzyme was measured and found to be 2.9 μmol/(min∙g liver). Ethanol disappearance was linear for over 120 min in vivo and the blood ethanol fell 0.1 mM/min; this is equivalent to removing 20 μmol ethanol/min and would require that flux through alcohol dehydrogenase be about 60% of its measured maximum velocity. To test whether ethanol metabolism was limited by the rate of removal of one of the end products (NADH) of alcohol dehydrogenase, fluoropyruvate was infused to reoxidize hepatic NADH and to prevent NADH generation via flux through pyruvate dehydrogenase. There was no change in the rate of ethanol clearance when fluoropyruvate was metabolized. Furthermore, enhancing endogenous hepatic NADH oxidation by increasing the rate of urea synthesis (converting ammonium bicarbonate to urea) did not augment the steady-state rate of ethanol oxidation. Hence, transport of cytoplasmic reducing power from NADH into the mitochondria was not rate limiting for ethanol oxidation. In contrast, ethanol oxidation at the earliest time periods could be augmented by increasing hepatic urea synthesis.


1985 ◽  
Vol 229 (2) ◽  
pp. 315-322 ◽  
Author(s):  
T Cronholm

Rates of exchange catalysed by alcohol dehydrogenase were determined in vivo in order to find rate-limiting steps in ethanol metabolism. Mixtures of [1,1-2H2]- and [2,2,2-2H3]ethanol were injected in rats with bile fistulas. The concentrations in bile of ethanols having different numbers of 2H atoms were determined by g.l.c.-m.s. after the addition of [2H6]ethanol as internal standard and formation of the 3,5-dinitrobenzoates. Extensive formation of [2H4]ethanol indicated that acetaldehyde formed from [2,2,2-2H3]ethanol was reduced to ethanol and that NADH used in this reduction was partly derived from oxidation of [1,1-2H2]ethanol. The rate of acetaldehyde reduction, the degree of labelling of bound NADH and the isotope effect on ethanol oxidation were calculated by fitting models to the found concentrations of ethanols labelled with 1-42H atoms. Control experiments with only [2,2,2-2H3]ethanol showed that there was no loss of the C-2 hydrogens by exchange. The isotope effect on ethanol oxidation appeared to be about 3. Experiments with (1S)-[1-2H]- and [2,2,2-2H3]ethanol indicated that the isotope effect on acetaldehyde oxidation was much smaller. The results indicated that both the rate of reduction of acetaldehyde and the rate of association of NADH with alcohol dehydrogenase were nearly as high as or higher than the net ethanol oxidation. Thus, the rate of ethanol oxidation in vivo is determined by the rates of acetaldehyde oxidation, the rate of dissociation of NADH from alcohol dehydrogenase, and by the rate of reoxidation of cytosolic NADH. In cyanamide-treated rats, the elimination of ethanol was slow but the rates in the oxidoreduction were high, indicating more complete rate-limitation by the oxidation of acetaldehyde.


1978 ◽  
Vol 172 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Kathryn E. Crow ◽  
Neal W. Cornell ◽  
Richard L. Veech

1. Hepatocytes isolated from starved rats and incubated without other substrates oxidized ethanol at a rate of 0.8–0.9μmol/min per g wet wt. of cells. Addition of 10mm-lactate increased this rate 2-fold. 2. Quinolinate (5mm) or tryptophan (1mm) decreased the rate of gluconeogenesis with 10mm-lactate and 8mm-ethanol from 0.39 to 0.04–0.08μmol/min per g wet wt. of cells, but rates of ethanol oxidation were not decreased. From these results it appears that acceleration of ethanol oxidation by lactate is not dependent upon the stimulation of gluconeogenesis and the consequent increased demand for ATP. 3. As another test of the relationship between ethanol oxidation and gluconeogenesis, the initial lactate concentration was varied from 0.5mm to 10mm and pyruvate was added to give an initial [lactate]/[pyruvate] ratio of 10. This substrate combination gave a large stimulation of ethanol oxidation (from 0.8 to 2.6μmol/min per g wet wt. of cells) at low lactate concentrations (0.5–2.0mm), but rates remained nearly constant (2.6–3.0μmol/min per g wet wt. of cells) at higher lactate concentrations (2.0–10mm). 4. In contrast, owing to the presence of ethanol, the rate of glucose synthesis was only slightly increased (from 0.08 to 0.12μmol/min per g wet wt. of cells) between 0.5mm- and 2.0mm-lactate and continued to increase (from 0.12 to 0.65μmol/min per g wet wt. of cells) with lactate concentrations between 2 and 10mm. 5. In the presence of ethanol, O2 uptake increased with increasing substrate concentration over the entire range. 6. Changes in concentrations of glutamate and 2-oxoglutarate closely paralleled changes in the rate of ethanol oxidation. 7. In isolated hepatocytes, rates of ethanol oxidation are lower than those in vivo apparently because of depletion of malate–aspartate shuttle intermediates during cell preparation. Rates are returned to those observed in vivo by substrates that increase the intracellular concentration of shuttle metabolites.


Sign in / Sign up

Export Citation Format

Share Document