alcohol dehydrogenase
Recently Published Documents


TOTAL DOCUMENTS

5418
(FIVE YEARS 303)

H-INDEX

114
(FIVE YEARS 8)

ChemBioChem ◽  
2022 ◽  
Author(s):  
Xiaomin Xu ◽  
Hugo Brasselet ◽  
Ewald Jongkind ◽  
Miguel Alcalde ◽  
Caroline Paul ◽  
...  

Author(s):  
Mukund P Srinivasan ◽  
Kamlesh K Bhopale ◽  
Anna A Caracheo ◽  
Lata Kaphalia ◽  
Bin Gong ◽  
...  

Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (w/v) EtOH for three months. One week before the euthanization, chronic EtOH fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, endoplasmic reticulum (ER)/oxidative stress were examined using H & E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH fed groups of ADH- vs. ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH fed groups of ADH- vs. ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0259386
Author(s):  
Devon W. Kavanaugh ◽  
Constance Porrini ◽  
Rozenn Dervyn ◽  
Nalini Ramarao

Bacillus cereus is a spore forming bacteria recognized among the leading agents responsible for foodborne outbreaks in Europe. B. cereus is also gaining notoriety as an opportunistic human pathogen inducing local and systemic infections. The real incidence of such infection is likely underestimated and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We have recently analyzed a large strain collection of varying pathogenic potential. Screening for biomarkers to differentiate among clinical and non-clinical strains, a gene encoding an alcohol dehydrogenase-like protein was identified among the leading candidates. This family of proteins has been demonstrated to be involved in the virulence of several bacterial species. The relevant gene was knocked out to elucidate its function with regards to resistance to host innate immune response, both in vitro and in vivo. Our results demonstrate that the adhB gene plays a significant role in resistance to nitric oxide and oxidative stress in vitro, as well as its pathogenic ability with regards to in vivo toxicity. These properties may explain the pathogenic potential of strains carrying this newly identified virulence factor.


Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 25
Author(s):  
Blanka Wolszczak-Biedrzycka ◽  
Elżbieta Zasimowicz-Majewska ◽  
Anna Bieńkowska ◽  
Grzegorz Biedrzycki ◽  
Justyna Dorf ◽  
...  

Background and objectives: The aim of the current study was to assess the use of determinations of total alcohol dehydrogenase and the activity of its isoenzymes as well as aldehyde dehydrogenase in the serum of patients with alcohol liver disease. Materials and Methods: The testing was performed on the serum of 38 patients with alcoholic fatty liver (26 males and 12 females aged 31–75). The total activity of ADH was determined by the colorimetric method. The activity of ADH I and ADH II, as well as ALDH, was determined by the spectrofluorometric method using fluorogenic specific substrates. The activity of isoenzymes of other classes was determined by spectrophotometric methods using substrates. Results: A statistically significantly higher ADH I activity was noted in the serum of patients with alcoholic fatty liver (4.45 mIU/L) compared to the control group (2.04 mIU/L). A statistically significant increase in the activity was also noted for the class II alcohol dehydrogenase isoenzyme (29.21 mIU/L, control group: 15.56 mIU/L) and the total ADH (1.41 IU/L, control group: 0.63 IU/L). Conclusions: The obtained results imply the diagnostic usefulness of the determination of AHD total, ADH I, and ADH II activity in the serum of patients with alcoholic fatty liver.


2021 ◽  
Author(s):  
Krzysztof Miler ◽  
Daniel Stec ◽  
Laura Pardyak ◽  
Alicja Kamińska ◽  
Karolina Kuszewska

2021 ◽  
Author(s):  
Avis D. W. Nugroho ◽  
Berdien van Olst ◽  
Sjef Boeren ◽  
Michiel Kleerebezem ◽  
Herwig Bachmann

Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2000-fold), while the remaining 10 significant proteome changes were between 1.4 and 4 fold. Further investigation in translationally-blocked (TB), non-growing cells showed that Mn supplementation (20 µM) led to approximately 1.5X faster acidification compared to Mn-free conditions. However, this faster acidification stagnated within 24 hours, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, non-growing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state.


2021 ◽  
pp. 2100332
Author(s):  
Fidan Erden‐Karaoğlan ◽  
Mert Karaoğlan ◽  
Gürkan Yılmaz ◽  
Semiramis Yılmaz ◽  
Mehmet İnan

Sign in / Sign up

Export Citation Format

Share Document