maximum velocity
Recently Published Documents


TOTAL DOCUMENTS

1509
(FIVE YEARS 371)

H-INDEX

64
(FIVE YEARS 6)

Author(s):  
Erin Feser ◽  
Kyle Lindley ◽  
Kenneth Clark ◽  
Neil Bezodis ◽  
Christian Korfist ◽  
...  

This study established the magnitude of systematic bias and random error of horizontal force-velocity (F-v) profile variables obtained from a 1080 Sprint compared to that obtained from a Stalker ATS II radar device. Twenty high-school athletes from an American football training group completed a 30 m sprint while the two devices simultaneously measured velocity-time data. The velocity-time data were modelled by an exponential equation fitting process and then used to calculate individual F-v profiles and related variables (theoretical maximum velocity, theoretical maximum horizontal force, slope of the linear F-v profile, peak power, time constant tau, and horizontal maximal velocity). The devices were compared by determining the systematic bias and the 95% limits of agreement (random error) for all variables, both of which were expressed as percentages of the mean radar value. All bias values were within 6.32%, with the 1080 Sprint reporting higher values for tau, horizontal maximal velocity, and theoretical maximum velocity. Random error was lowest for velocity-based variables but exceeded 7% for all others, with slope of the F-v profile being greatest at ±12.3%. These results provide practitioners with the information necessary to determine if the agreement between the devices and the magnitude of random error is acceptable within the context of their specific application.


2022 ◽  
Author(s):  
Jian-Jun Meng ◽  
Xiao-Tong Chen ◽  
Wen-Zhe Qi ◽  
De-Cang Li ◽  
Ru-Xun Xu

Abstract To solve the problem of abnormal angular velocity and angular acceleration in manipulator trajectory motion controlled by quintic spline interpolation algorithm, a manipulator trajectory control algorithm combined with moving average filtering algorithm was proposed. Based on the quintic spline interpolation algorithm, the moving average filtering algorithm was used to clean the abnormal data under the quintic spline interpolation. And the recursive forward dynamics model based on joint space motion was used to design the trajectory motion control of the manipulator. The simulation results show that the manipulator trajectory control algorithm combined with the moving average filtering algorithm has strong constraint ability of diagonal velocity and angular acceleration, and 67% of the maximum velocity and maximum acceleration of the joint axis of the designed manipulator trajectory are significantly reduced, and the curve is smoother.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Yandri Yandri ◽  
Ezra Rheinsky Tiarsa ◽  
Tati Suhartati ◽  
Heri Satria ◽  
Bambang Irawan ◽  
...  

The stability of the α-amylase enzyme has been improved from Aspergillus fumigatus using the immobilization method on a bentonite matrix. Therefore, this study aims to obtain the higher stability of α-amylase enzyme from A. fumigatus; hence, it is used repeatedly to reduce industrial costs. The procedures involved enzyme production, isolation, partial purification, immobilization, and characterization. Furthermore, the soluble enzyme was immobilized using 0.1 M phosphate buffer of pH 7.5 on a bentonite matrix, after which it was characterized with the following parameters such as optimum temperature, Michaelis constant (KM), maximum velocity V max , thermal inactivation rate constant (ki), half-life (t1/2), and the change of energy due to denaturation (ΔGi). The results showed that the soluble enzyme has an optimum temperature of 55°C, KM of 3.04 mg mL−1 substrate, V max of 10.90 μmole mL−1 min−1, ki of 0.0171 min−1, t1/2 of 40.53 min, and ΔGi of 104.47 kJ mole−1, while the immobilized enzyme has an optimum temperature of 70°C, KM of 8.31 mg mL−1 substrate, V max of 1.44 μmole mL−1 min−1, ki of 0.0060 min−1, t1/2 of 115.50 min, and ΔGi of 107.37 kJ mole−1. Considering the results, the immobilized enzyme retained 42% of its residual activity after six reuse cycles. Additionally, the stability improvement of the α-amylase enzyme by immobilization on a bentonite matrix, based on the increase in half-life, was three times greater than the soluble enzyme.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Jon-Émile S. Kenny ◽  
Igor Barjaktarevic ◽  
David C. Mackenzie ◽  
Mai Elfarnawany ◽  
Zhen Yang ◽  
...  

Abstract Objective Doppler ultrasonography of the common carotid artery is used to infer stroke volume change and a wearable Doppler ultrasound has been designed to improve this workflow. Previously, in a human model of hemorrhage and resuscitation comprising approximately 50,000 cardiac cycles, we found a strong, linear correlation between changing stroke volume, and measures from the carotid Doppler signal, however, optimal Doppler thresholds for detecting a 10% stroke volume change were not reported. In this Research Note, we present these thresholds, their sensitivities, specificities and areas under their receiver operator curves (AUROC). Results Augmentation of carotid artery maximum velocity time integral and corrected flowtime by 18% and 4%, respectively, accurately captured 10% stroke volume rise. The sensitivity and specificity for these thresholds were identical at 89% and 100%. These data are similar to previous investigations in healthy volunteers monitored by the wearable ultrasound.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Daniele Costa ◽  
Cecilia Scoccia ◽  
Matteo Palpacelli ◽  
Massimo Callegari ◽  
David Scaradozzi

Bio-inspired solutions devised for Autonomous Underwater Robots are currently investigated by researchers as a source of propulsive improvement. To address this ambitious objective, the authors have designed a carangiform swimming robot, which represents a compromise in terms of efficiency and maximum velocity. The requirements of stabilizing a course and performing turns were not met in their previous works. Therefore, the aim of this paper is to improve the vehicle maneuvering capabilities by means of a novel transmission system capable of transforming the constant angular velocity of a single rotary actuator into the pitching–yawing rotation of fish pectoral fins. Here, the biomimetic thrusters exploit the drag-based momentum transfer mechanism of labriform swimmers to generate the necessary steering torque. Aside from inertia and encumbrance reduction, the main improvement of this solution is the inherent synchronization of the system granted by the mechanism’s kinematics. The system was sized by using the experimental results collected by biologists and then integrated in a multiphysics simulation environment to predict the resulting maneuvering performance.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Owen N. Beck ◽  
Paolo Taboga ◽  
Alena M. Grabowski

Running-prostheses have enabled exceptional athletes with bilateral leg amputations to surpass Olympic 400 m athletics qualifying standards. Due to the world-class performances and relatively fast race finishes of these athletes, many people assume that running-prostheses provide users an unfair advantage over biologically legged competitors during long sprint races. These assumptions have led athletics governing bodies to prohibit the use of running-prostheses in sanctioned non-amputee (NA) competitions, such as at the Olympics. However, here we show that no athlete with bilateral leg amputations using running-prostheses, including the fastest such athlete, exhibits a single 400 m running performance metric that is better than those achieved by NA athletes. Specifically, the best experimentally measured maximum running velocity and sprint endurance profile of athletes with prosthetic legs are similar to, but not better than those of NA athletes. Further, the best experimentally measured initial race acceleration (from 0 to 20 m), maximum velocity around curves, and velocity at aerobic capacity of athletes with prosthetic legs were 40%, 1–3% and 19% slower compared to NA athletes, respectively. Therefore, based on these 400 m performance metrics, use of prosthetic legs during 400 m running races is not unequivocally advantageous compared to the use of biological legs.


Author(s):  
Damian GOŁOŚ ◽  
Michał JASIŃSKI ◽  
Paweł ZAWADA ◽  
Janusz NOGA

This paper discusses the design of a G-force test stand intended to examine of the effects of mechanical loads present during firing of a weapon and applied to the electronic components contained in the 155 mm calibre guided projectile. The G-force test stand is used to develop and test the effects of using high mechanical loads by decelerating a test specimen through the use of a purpose-designed fender assembly. For the purpose of testing, it is irrelevant whether a load is developed by acceleration or deceleration of the test specimen, as a test result obtained by the deceleration of a test specimen is equivalent to a test result obtained by the acceleration of a test specimen, as used in a 155 mm calibre artillery guided projectile. The G-force test stand was used to test and determine the velocities developed by the test specimens and the G-forces applied to them. The maximum velocity to which a test specimen was accelerated was approx. 72 m/s. The test stand was able to propel the test specimens to velocities an order of magnitude higher than the velocities obtained with a Kast and Masset ram. The tests were performed with rubber and copper fender assemblies. The effect of the specific fender used was demonstrated on the trend of the generated G-force. The test stand could develop G-forces in excess of 10,000 with a duration of more than 500 µs.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 69
Author(s):  
Aldo Benavides-Morán ◽  
Luis Rodríguez-Jaime ◽  
Santiago Laín

This paper presents computational fluid dynamics (CFD) simulations of the flow around a horizontal axis hydrokinetic turbine (HAHT) found in the literature. The volume of fluid (VOF) model implemented in a commercial CFD package (ANSYS-Fluent) is used to track the air-water interface. The URANS SST k-ω and the four-equation Transition SST turbulence models are employed to compute the unsteady three-dimensional flow field. The sliding mesh technique is used to rotate the subdomain that includes the turbine rotor. The effect of grid resolution, time-step size, and turbulence model on the computed performance coefficients is analyzed in detail, and the results are compared against experimental data at various tip speed ratios (TSRs). Simulation results at the analyzed rotor immersions confirm that the power and thrust coefficients decrease when the rotor is closer to the free surface. The combined effect of rotor and support structure on the free surface evolution and downstream velocities is also studied. The results show that a maximum velocity deficit is found in the near wake region above the rotor centerline. A slow wake recovery is also observed at the shallow rotor immersion due to the free-surface proximity, which in turn reduces the power extraction.


2021 ◽  
Vol 71 (Suppl-3) ◽  
pp. S546-51
Author(s):  
Nadeem Ahmed Sheikh ◽  
Azhar Ali Choudhary ◽  
Kanwal Nadeem ◽  
Areeba Khursheed ◽  
Rida Fatima ◽  
...  

Objective: We aimed at establishing a correlation between deviated nasal septum and pulmonary artery hypertension in patients reporting in Otorhinolaryngology (ENT) clinic at Combined Military Hospital Quetta, and evaluating the beneficial impact of sub mucoperichondrial resection (SMR) operation on right heart myocardial function, primarily related to Pulmonary Arterial Pressures of these patients of longstanding nasal septal deviation. Study Design: Descriptive; hospital-based cross-sectional survey. Place and Duration of Study: Departments of Otorhinolaryngology & Cardiology, Combined Military Hospital, Quetta, from Sep 2019 to Apr 2021. Methodology: Electrocardiographic and 2-Dimensional Echocardiographic parameters of 87 randomized patients suffering from symptomatic longstanding deviated nasal septum (DNS) who had consented to undergo sub mucoperichondrial resection (SMR) operation were compared and studied for any change in status of probability of pulmonary arterial hypertension before and two months after their surgery. Probability of pulmonary hypertension was estimated using probability criteria from updated European Society of Cardiology Pulmonary Hypertension Guidelines 2019. Patients were classified into low, intermediate and high probability depending upon the number of criteria fulfilled by echocardiographic parameters. Results: Two (2.3%) patients suffering from deviated nasal septum presented with p-pulmonale. Twelve (13.8%) reported with right bundle branch block, and 7 (8%) patients demonstrated right axis deviation on electrocardiography. Overall high probability to develop pulmonary hypertension was discovered in 2 (2.3%) patients. We observed a significant improvement in pulmonary artery pressures in patients suffering from long term upper airway obstruction, two months following sub mucoperichondrial resection operation, in terms of maximum velocity and peak tricuspid regurgitation, right ventricle/left..........


2021 ◽  
Vol 14 (1) ◽  
pp. 241
Author(s):  
Yang Wang ◽  
Xue Li ◽  
Jiyu Li ◽  
Jipeng Xu

Herein, a finite discrete element method was used to simulate the rockburst phenomenon of elliptical caverns with different axis ratios. Two situations were employed, namely when the disturbance direction is perpendicular and parallel to the ellipse. Based on the peak stress, maximum velocity, stress nephogram, and image fractal characteristics, the influence of axis ratio and direction of the disturbance on rockburst were analyzed. The results show that the samples with different axis ratios experienced the same process of quiet period, slab cracking period, and rockburst. The rockburst pit had V shape, and the failure modes of rockburst primarily included shear cracks, horizontal tension cracks, and vertical tension cracks. With the rise in axis ratio, the peak stress and maximum speed increased. Furthermore, the pressure area on the left and right sides of the sample cavern decreased when the disturbance direction was parallel to the short axis of the ellipse, while it increased for the sample with a disturbance direction perpendicular to the short axis. The fractal dimension value of the crack was gradually amplified with disturbance. The fractal dimension value of the sample whose disturbance direction was perpendicular to the minor axis of the ellipse was lower, and it was more difficult to damage.


Sign in / Sign up

Export Citation Format

Share Document