Diagrams in coupled-cluster theory: Algebraic derivation of a new diagrammatic method for closed shells

Author(s):  
Devin A. Matthews ◽  
John F. Stanton
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2017 ◽  
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Wataru Mizukami ◽  
Kosuke Mitarai ◽  
Yuya O. Nakagawa ◽  
Takahiro Yamamoto ◽  
Tennin Yan ◽  
...  

2021 ◽  
Vol 154 (23) ◽  
pp. 234103
Author(s):  
Andreas Irmler ◽  
Alejandro Gallo ◽  
Andreas Grüneis

Sign in / Sign up

Export Citation Format

Share Document