Mechanical properties and in situ stresses from field data

2021 ◽  
pp. 429-459
Author(s):  
Erling Fjær ◽  
Rune Martin Holt ◽  
Per Horsrud ◽  
Arne Marius Raaen ◽  
Rasmus Risnes
2021 ◽  
Vol 19 (3) ◽  
pp. 45-44
Author(s):  
Homa Viola Akaha-Tse ◽  
Michael Oti ◽  
Selegha Abrakasa ◽  
Charles Ugwu Ugwueze

This study was carried out to determine the rock mechanical properties relevant for hydrocarbon exploration and production by hydraulic  fracturing of organic rich shale formations in Anambra basin. Shale samples and wireline logs were analysed to determine the petrophysical, elastic, strength and in-situ properties necessary for the design of a hydraulic fracturing programme for the exploitation of the shales. The results obtained indicated shale failure in shear and barreling under triaxial test conditions. The average effective porosity of 0.06 and permeability of the order of 10-1 to 101 millidarcies showed the imperative for induced fracturing to assure fluid flow. Average Young’s modulus and Poisson’s ratio of about 2.06 and 0.20 respectively imply that the rocks are favourable for the formation and propagation of fractures during hydraulic fracking. The minimum horizontal stress, which determines the direction of formation and growth of artificially induced hydraulic fractures varies from wellto-well, averaging between 6802.62 to 32790.58 psi. The order of variation of the in-situ stresses is maximum horizontal stress>vertical stress>minimum horizontal stress which implies a reverse fault fracture regime. The study predicts that the sweet spots for the exploration and development of the shale-gas are those sections of the shale formations that exhibit high Young’s modulus, low Poisson’s ratio, and high brittleness. The in-situ stresses required for artificially induced fractures which provide pore space for shale gas accumulation and expulsion are adequate. The shales possess suitable mechanical properties to fracture during hydraulic fracturing. Application of these results will enhance the potentials of the onshore Anambra basin as a reliable component in increasing Nigeria’s gas reserves, for the improvement of the nation’s economy and energy security. Key Words: Hydraulic Fracturing, Organic-rich Shales, Rock Mechanical Properties, Petrophysical Properties, Anambra Basin


2010 ◽  
Vol 50 (1) ◽  
pp. 581 ◽  
Author(s):  
Mohammad Sarmadivaleh ◽  
Vamegh Rasouli

Production from tight formations is becoming a main focus around the world and particularly in Australia. Hydraulic fracturing is one of the commonly used approaches to stimulate production from tight reservoirs. A good understanding of mechanical properties of formation and the in-situ stresses is essential for a hydraulic fracturing study. In this work, using the log based approach, the mechanical properties and in-situ stresses were estimated in a tight gas formation. This data is then used as input for 2D numerical simulation of hydraulic fracturing in particle flow code (PFC). The initiation and propagation of an induced fracture was studied by increasing the rock strength to simulate a tight formation response. Thereafter, the model was divided into two zones to investigate the fracture containment capacity to simulate a fracture intersecting an interbed with formation properties being different on the two sides. The formation bond strength was increased on one side of the interbed and fracture extension was monitored. The results of both simulations showed how, by increasing formation strength equivalent to a tighter formation, the fracture extension ability reduces and the interbed containment capacity increases. The results were compared with some of the analytical models and good agreement was observed.


2007 ◽  
Author(s):  
Colin Michael Sayers ◽  
Saad M. Kisra ◽  
Kwasi M. Tagbor ◽  
Jose Adachi

2006 ◽  
Author(s):  
Antonio Pellegrino ◽  
Federico Cappanera ◽  
Claudio Toscano

Sign in / Sign up

Export Citation Format

Share Document