tight formations
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Mingqiang Chen ◽  
Qingping Li ◽  
Linsong Cheng ◽  
Xiukun Wang ◽  
Chaohui Lyu ◽  
...  

Understanding different fluids flow behavior confined in microscales has tremendous significance in the development of tight oil reservoirs. In this article, a novel semiempirical model for different confined fluid flow based on the concept of boundary layer thickness, caused by the fluid–solid interaction, is proposed. Micro-tube experiments are carried out to verify the novel model. After the validation, the viscosity effect on the flow rate and Poiseuille number considering the fluid–solid interaction is investigated. Furthermore, the novel model is incorporated into unstructured networks with anisotropy to study the viscosity effect on pore-scale flow in tight formations under the conditions of different displacement pressure gradients, different aspect ratios (ratio of the pore radius to the connecting throat radius), and different coordination numbers. Results show that the viscosity effect on the flow rate and Poiseuille number after considering the fluid–solid interaction induces a great deviation from that in conventional fluid flow. The absolute permeability is not only a parameter related to pore structures but also depends on fluid viscosity. The study provides an effective model for modeling different confined fluid flow in microscales and lays a good foundation for studying fluid flow in tight formations.


2021 ◽  
Author(s):  
Umesh Prasad ◽  
Amer Hanif ◽  
Ian McGlynn ◽  
Frank Walles ◽  
Ahmed Abouzaid ◽  
...  

Abstract The influences of mineralogy on rock mechanical properties have profound application in oil and gas exploration and production processes, including hydraulic fracturing operations. In conventional resources, the rock mechanical properties are predominantly controlled by porosity; however, in unconventional tight formations, the importance of mineralogy as a function of rock mechanical properties has not been fully investigated. In unconventional tight formations, mechanical properties are often derived from mineralogy weight fraction together with the best estimate of porosity, assumption of fluid types, the extent of pore fillings, and fluid properties. These properties are then adjusted for their volumetric fractions and subsequently calibrated with acoustics or geomechanical lab measurements. A new method is presented that utilizes mineralogy weight fractions (determined from well logs or laboratory measurements). This process uses public domain information of minerals using Voigt and Reuss averaging algorithms as upper and lower bounds, respectively. An average of these bounds (also known as Hill average) provides a representative value for these parameters. Further, based on isotropic conditions, all the elastic properties are calculated. A typical output consisting of bulk-, shear-, and Young's - modulus, together with Poisson's ratio obtained from traditional methods of volume fractions and this new method using weight fractions is discussed and analyzed along with the sensitivity and the trends for individual rock properties. Furthermore, corresponding strengths, hardness, and fracture toughness could also be estimated using well known public domain algorithms. Data from carbonate reservoirs has been discussed in this work. This method shows how to estimate grain compressibility that can be challenging to be measured in the lab for unconventional tight rock samples. In low-porosity samples, the relative influence of porosity is negligible compared to the mineralogy composition. This approach reduces several assumptions and uncertainties associated with accurate porosity determination in tight rocks as it does not require the amount of pore fluids and fluid properties in calculations. The grain-compressibility and bulk-compressibility (measured by hydrostatic tests in the laboratory on core plugs or calculated from density and cross-dipole log) are used to calculate poroelastic Biot's coefficient, as this coefficient will be used to calculate in-situ principal effective stresses (overburden, minimum horizontal, and maximum horizontal stresses), which are, together with rock properties and pore pressure, constitutes the geomechanical model. The geomechanical model is used for drilling, completions, and hydraulic fracture modeling, including wellbore stability, and reservoir integrity analyses.


2021 ◽  
Author(s):  
Aamer Albannay ◽  
Binh Bui ◽  
Daisuke Katsuki

Abstract Capillary condensation is the condensation of the gas inside nano-pore space at a pressure lower than the bulk dew point pressure as the result of multilayer adsorption due to the high capillary pressure inside the small pore throat of unconventional rocks. The condensation of liquid in nano-pore space of rock changes its mechanical and acoustic properties. Acoustic properties variation due to capillary condensation provides us a tool to monitor phase change in reservoir as a result of nano-confinement as well as mapping the area where phase change occurs as well as characterize pore size distribution. This is particularly important for tight formations where confinement has a strong effect on phase behavior that is challenging to measure experimentally. Theoretical studies have examined the effects of capillary condensation; however, these findings have not been verified experimentally. The main objective of this study is to experimentally investigate the effect of capillary condensation on the mechanical and acoustic properties of shale samples. The mechanical and acoustic characterization of the samples was carried out experimentally using a state-of-the-art tri-axial facility at the Colorado School of Mines. The experimental set-up is capable of the simultaneous acquisition of coupled stress, strain, resistivity, acoustic and flow data. Carbon dioxide was used as the pore pressure fluid in these experiments. After a comprehensive characterization of shale samples, experiments were conducted by increasing the pore pressure until condensation occurs while monitoring the mechanical and acoustic properties of the sample to quantify the effect of capillary condensation on the mechanical and acoustic properties of the sample. Experimental data show a 5% increase in Young's Modulus as condensation occurs. This increase is attributed to the increase in pore stiffness as condensation occurs reinforcing the grain contact. An initial decrease in compressional velocity was observed as pore pressure increases before condensation occurs which is attributed to the expansion of the pore volume when pore pressure increases. After this initial decrease, compressional velocity slightly increases at a pressure around 750 - 800 psi which is close to the condensation pressure. We also observed a noticeable increase in shear velocity when capillary condensation occurs, this could be due to the immobility of the condensed liquid phase at the pore throats. The changes of geomechanical and acoustic signatures were observed at around 750 - 800 psi at 27°C, which is the dew point pressure of the fluid in the nano-pore space of the sample at this temperature. While the unconfined bulk dew point pressure of carbon dioxide at the same temperature is 977 psi. Hence, this study marks the first measurement of the dew point of fluid in nano-pore space and potentially leads to the construction of the phase envelope of fluid under confinement.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121603
Author(s):  
Xiaolong Peng ◽  
Xiangzeng Wang ◽  
Xiang Zhou ◽  
Zeyu Lin ◽  
Fanhua Zeng ◽  
...  

2021 ◽  
Vol 931 (1) ◽  
pp. 012012
Author(s):  
E V Kusochkova ◽  
I M Indrupskiy ◽  
V N Kuryakov

Abstract It is known that initial composition of the hydrocarbon fluid in a petroleum reservoir changes significantly with depth due to the influence of gravity and geothermal gradient. Classical models of these phenomena are based on the assumption of equilibrium (quasiequilibrium) distribution of component concentrations in the gravity field with the presence of stationary thermodiffusional flux. However, there are typical situations in gas condensate reservoirs when the quasi-equilibrium conditions are not met. For example, this is true if immobile residual oil exists in the reservoir or for deep tight formations where gravity segregation is not completed. For such cases, modified models are required. They are proposed in this paper to take into account the non-equilibrium conditions of the initial fluid composition distribution in gas condensate (or oil-gas-condensate) reservoirs.


2021 ◽  
Author(s):  
Martin Shumway ◽  
Ryan McGonagle ◽  
Anthony Nerris ◽  
Janaina I.S. Aguiar ◽  
Amir Mahmoudkhani ◽  
...  

Abstract Legacy oil production from Appalachian basin has been in a decline mode since 2013. With more than 80% of wells producing less than 15 bbl/day, there is a growing interest in economically and environmentally viable options for well stimulation treatments. Analysis of formation mineralogy and reservoir fluids along with history of well interventions indicated formation damage in many wells due precipitation of organics and a change in wettability being partially responsible for production decline rates in excess of forecasts. The development and properties of a novel cost-effective biosurfactant based well-stimulation fluid are described here along lessons learned from several field trials in wells completed in the Upper Devonian Bradford Group. This group of 74 wells, completed in siltstone and sandstone reservoirs were presenting more than 12 well failures annually across the field, which was attributed to the accumulation of organic deposits in the tubulars. Based on these cases, batch stimulation treatments using a novel fluid comprising biosurfactants were proposed and implemented field wide. The treatments effectively removed organic deposits, changed formation wettability from oil to water wet and resulted in a sustained oil production increase. Well failures were significantly reduced as a result of this program and the group of 74 wells did not have a paraffin-related well failure for 18 months. Results from this program demonstrates the efficiency of the green well stimulation fluids in mitigating formation damage, reducing organics deposition and in increasing oil production as a promising method to stimulate tight formations.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ghith Biheri ◽  
Abdulmohsin Imqam

Summary The stimulation of unconventional reservoirs to improve oil productivity in tight formations of shale basins is a key objective in hydraulic fracturing treatments. Such stimulation can be made by reliable fracture fluids that have a high viscosity and elasticity to suspend the proppant in the fracture networks. Recently, due to several operational and economic reasons, the oil industry began using high-viscosity friction reducers (HVFRs) as direct replacements for linear and crosslinked gels. However, some issues can limit the capability of HVFRs to provide effective sand transport, including the high fluid temperature during fracture treatment inside the formations. This may lead to unstable fracture fluids caused by a decrease in the interconnective strength between the fluid chains, which results in reduced viscosity and elasticity. This study comprehensively investigated HVFRs in comparison with guar at various temperatures. An HVFR at 4 gallons per thousand gallons of water (gpt) and guar at 25 pounds per thousand gallons of water (ppt) were selected based on fluid rheology tests and hydraulic fracture execution field results. The rheological measurements of both fracture fluids were conducted at different temperature values (i.e., 25, 50, 75, and 100°C). Static and dynamic proppant settling tests were also conducted at the same temperatures. The results showed that the HVFR provided better proppant transport capability than the guar. The HVFR had better thermal stability than guar, but its viscosity and elasticity decreased significantly when the temperature exceeded 75°C. An HVFR can carry and hold the proppant more deeply inside the fracture than liner gel, but that ability decreases as the temperature increases. Therefore, using conditions that mimic field conditions to measure the fracture fluid rheology, proppant static settling velocity, and proppant dune development under a high temperature is crucial for enhancing the fracture treatment results.


Fuel ◽  
2021 ◽  
Vol 295 ◽  
pp. 120507
Author(s):  
Guangfeng Liu ◽  
Leiyu He ◽  
Zhaoqi Fan ◽  
Yilin He ◽  
Zheng Wu ◽  
...  

Author(s):  
Atheer Dheyauldeen ◽  
Omar Al-Fatlawi ◽  
Md Mofazzal Hossain

AbstractThe main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainability of the project. Several approaches are presented in literatures to determine incremental and acceleration recovery and areas for infill drilling. However, the majority of these methods require huge and expensive data; and very time-consuming simulation studies. In this study, two qualitative techniques are proposed for the estimation of incremental and accelerated recovery based upon readily available production data. In the first technique, acceleration and incremental recovery, and thus infill drilling, are predicted from the trend of the cumulative production (Gp) versus square root time function. This approach is more applicable for tight formations considering the long period of transient linear flow. The second technique is based on multi-well Blasingame type curves analysis. This technique appears to best be applied when the production of parent wells reaches the boundary dominated flow (BDF) region before the production start of the successive infill wells. These techniques are important in field development planning as the flow regimes in tight formations change gradually from transient flow (early times) to BDF (late times) as the production continues. Despite different approaches/methods, the field case studies demonstrate that the accurate framework for strategic well planning including prediction of optimum well location is very critical, especially for the realization of the commercial benefit (i.e., increasing and accelerating of reserve or assets) from infilled drilling campaign. Also, the proposed framework and findings of this study provide new insight into infilled drilling campaigns including the importance of better evaluation of infill drilling performance in tight formations, which eventually assist on informed decisions process regarding future development plans.


Sign in / Sign up

Export Citation Format

Share Document