Shape optimization problem based on optimal control theory by using speed method

Author(s):  
Y. Ogawa ◽  
T. Ochiai ◽  
M. Kawahara
2003 ◽  
Vol 125 (3) ◽  
pp. 480-482 ◽  
Author(s):  
Yan-An Yao ◽  
Hong-Sen Yan ◽  
Ce Zhang

This paper applies the concept of variable speeds to vibration control of elastic cam-follower systems. A multi-design-point approach, based on optimal control theory, is developed for selecting suitable input speed functions of the cam that can reduce both primary and residual vibrations of the output in elastic cam-follower systems despite parameter variations. A design example is given to verify the feasibility of the approach.


2014 ◽  
Vol 2 ◽  
pp. 86-86
Author(s):  
Miki U. Kobayashi ◽  
Nobuaki Aoki ◽  
Noriyoshi Manabe ◽  
Tadafumi Adschiri

2020 ◽  
pp. 108473
Author(s):  
Xiuquan Liu ◽  
Zhaowei Liu ◽  
Xianglei Wang ◽  
Nan Zhang ◽  
Na Qiu ◽  
...  

Author(s):  
Johanna Schultes ◽  
Michael Stiglmayr ◽  
Kathrin Klamroth ◽  
Camilla Hahn

AbstractIn engineering applications one often has to trade-off among several objectives as, for example, the mechanical stability of a component, its efficiency, its weight and its cost. We consider a biobjective shape optimization problem maximizing the mechanical stability of a ceramic component under tensile load while minimizing its volume. Stability is thereby modeled using a Weibull-type formulation of the probability of failure under external loads. The PDE formulation of the mechanical state equation is discretized by a finite element method on a regular grid. To solve the discretized biobjective shape optimization problem we suggest a hypervolume scalarization, with which also unsupported efficient solutions can be determined without adding constraints to the problem formulation. FurthIn this section, general properties of the hypervolumeermore, maximizing the dominated hypervolume supports the decision maker in identifying compromise solutions. We investigate the relation of the hypervolume scalarization to the weighted sum scalarization and to direct multiobjective descent methods. Since gradient information can be efficiently obtained by solving the adjoint equation, the scalarized problem can be solved by a gradient ascent algorithm. We evaluate our approach on a 2 D test case representing a straight joint under tensile load.


Sign in / Sign up

Export Citation Format

Share Document