design point
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 88)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
J Arturo Alonso ◽  
Ivan Calvo ◽  
Daniel Carralero ◽  
Jose Luis Velasco ◽  
José Manuel García Regaña ◽  
...  

Abstract The ongoing development of electromagnets based on High Temperature Superconductors has led to the conceptual exploration of high-magnetic-field fusion reactors of the tokamak type, operating at on-axis fields above 10 T. In this work we explore the consequences of the potential future availability of high-field three-dimensional electromagnets on the physics design point of a stellarator reactor. We find that, when an increase in the magnetic field strength $B$ is used to maximally reduce the device linear size $R\sim B^{-4/3}$ (with otherwise fixed magnetic geometry), the physics design point is largely independent of the chosen field strength/device size. A similar degree of optimization is to be imposed on the magnetohydrodynamic, transport and fast ion confinement properties of the magnetic configuration of that family of reactor design points. Additionally, we show that the family shares an invariant operation map of fusion power output as a function of the auxiliary power and relative density variation. The effects of magnetic field over-engineering and the $R(B)$ scaling of design points with constant neutron wall loading are also inspected. In this study we use geometric parameters characteristic of the \emph{helias} reactor, but most results apply to other stellarator configurations.


Author(s):  
Yan Longlong ◽  
Bo Gao ◽  
Dan Ni ◽  
Ning Zhang ◽  
Wenjie Zhou

Abstract To accurately capture the behaviors of cavitation and reveal the unsteady cavitating flow mechanism, a condensate pump inducer is numerically analyzed in a separate numerical experiment with LES at critical cavitation number sind,c under the design point. Based on the new Omega vortex identification method, the correction between the flow structures and cavities is clearly illustrated. Besides, the pressure fluctuations around the inducer are analyzed. Special emphasis is put on the analysis of the interactions between the cavities, turbulent fluctuations, and vortical flow structures. The Omega vortex identification method could give an overall picture of the whole cavitating flow structures to present a clear correlation between the vortices and cavities. The results show that the shear cavitation dominant the cavitation characteristics under the design point. The pure rigid rotation region mainly concentrates at the edge of the cavities while the other sheet-like cavities near the casing walls are characterized by strong turbulence fluctuations. Besides, based on the analysis of the correlation between the cavities and flow structures, the rotating cavitation under the design point may mainly attribute to the interaction between the tip leakage vortex cavitation and the next blade.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012031
Author(s):  
Ahmed H S Yassin ◽  
Sameh M Shabaan ◽  
Amany Khaled

Abstract The design of a conventional horizontal axis wind turbine (HAWT) is based on the aerodynamic characteristics of a two-dimensional (2D) airfoil. The rotational motion and the consequent aerodynamic effects, of HAWT’s rotor, do not guarantee an optimal design point that matches the 2D airfoil characteristics. The present work studies the diversion of the flow due to the spanwise velocity component in a rotating reference frame. It suggests that a slight deviation in the flow away from the chordwise direction could alternate the characteristics of the airfoil profile. A bended profile with a circular arc was extracted from a baseline rotating blade, flattened, and modelled against the 2D S826 airfoil. The results show a substantial discrepancy in the airfoil characteristics which could influence the turbine efficiency. Therefore, it suggests using a pre-bended airfoil (3D) while modeling the blade, so the circular section will match the correct airfoil coordinates. The proposed bended-profile version was modeled against the baseline blade. This novel blade shows an augmentation in the power coefficient up to 5.4% starting from the design point to high tip speed ratios (TSR) and low wind speeds.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6227
Author(s):  
Muhammed Saeed ◽  
Abdallah S. Berrouk ◽  
Munendra Pal Singh ◽  
Khaled Alawadhi ◽  
Muhammad Salman Siddiqui

The role of a pre-cooler is critical to the sCO2-BC as it not only acts as a sink but also controls the conditions at the main compressor’s inlet that are vital to the cycle’s overall performance. Despite their prime importance, studies on the pre-cooler’s design are hard to find in the literature. This is partly due to the unavailability of data around the complex thermohydraulic characteristics linked with their operation close to the critical point. Henceforth, the current work deals with designing and optimizing pre-cooler by utilizing machine learning (ML), an in-house recuperator and pre-cooler design, an analysis code (RPDAC), and a cycle design point code (CDPC). Initially, data computed using 3D Reynolds averaged Navier-Stokes (RANS) equation is used to train the machine learning (ML) model based on the deep neural network (DNN) to predict Nusselt number (Nu) and friction factor (f). The trained ML model is then used in the pre-cooler design and optimization code (RPDAC) to generate various designs of the pre-cooler. Later, RPDAC was linked with the cycle design point code (CDPC) to understand the impact of various designs of the pre-cooler on the cycle’s performance. Finally, a multi-objective genetic algorithm was used to optimize the pre-cooler geometry in the environment of the power cycle. Results suggest that the trained ML model can approximate 99% of the data with 90% certainty in the pre-cooler’s operating regime. Cycle simulation results suggest that the cycle’s performance calculation can be misleading without considering the pre-cooler’s pumping power. Moreover, the optimization study indicates that the compressor’s inlet temperature ranging from 307.5 to 308.5 and pre-cooler channel’s Reynolds number ranging from 28,000 to 30,000 would be a good compromise between the cycle’s efficiency and the pre-cooler’s size.


2021 ◽  
Vol 144 (2) ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky ◽  
J. Klausmann ◽  
K. A. Metz

Abstract In the present paper, three centrifugal stages of high volume flow coefficient are compared to each-other regarding their aerodynamic performance in design point and off-design point conditions at different speed and inlet guide vane (IGV)-setting angle: two stages with full-blade design (no splitter blades) have been numerically designed with different design geometry methodology. One geometry is based on a classical ruling surface design with a linear leading edge, the second geometry based on a fully-three-dimensional surface including a blade bow at the trailing edge and a barreled sweep at the leading edge. According to impeller test rig measurements and computational fluid dynamics (CFD) calculation, the classical ruling surface designed impeller outperforms the more sophisticated centrifugal stage with fully 3D-blade at fully axially guided IGV-flow. In the contrary, at closing IGV-off-design setting angles, toward surge operation, the fully 3D-blade impeller performs with higher efficiency and steeper negative pressure slope. On the search of the geometrical causes for the different aerodynamic performance (especially at IGV-off-design conditions), focus is set on the analysis of IGV-flow-interaction with the inducer flow and impeller diffusion. The one-dimensional analysis of the spanwise flow at the impeller leading edge reveals that, compared with the ruling surface impeller, the fully 3D-blade performs with lower flow incidence losses in favor to IGV-off-design operation than at IGV-neutral position. The streamwise flow analysis confirms the improved flow incidence characteristics of the 3D-blade impeller due to reduction of aerodynamic blockage and entropy production in the vicinity of the impeller leading edge. Based on CFD calculations, a new correlation of secondary flow and flow incidence is proposed, to be used for one-dimensional modeling.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2152
Author(s):  
Karim El-Abbasy ◽  
Ramy Taki Eldin ◽  
Salwa El Ramly ◽  
Bassant Abdelhamid

Polar codes are featured by their low encoding/decoding complexity for symmetric binary input-discrete memoryless channels. Recently, flexible generic Successive Cancellation List (SCL) decoders for polar codes were proposed to provide different throughput, latency, and decoding performances. In this paper, we propose to use polar codes with flexible fast-adaptive SCL decoders in Digital Video Broadcasting (DVB) systems to meet the growing demand for more bitrates. In addition, they can provide more interactive services with less latency and more throughput. First, we start with the construction of polar codes and propose a new mathematical relation to get the optimized design point for the polar code. We prove that our optimized design point is too close to the one that achieves minimum Bit Error Rate (BER). Then, we compare the performance of polar and Low-Density Parity Check (LDPC) codes in terms of BER, encoder/decoder latencies, and throughput. The results show that both channel coding techniques have comparable BER. However, polar codes are superior to LDPC in terms of decoding latency, and system throughput. Finally, we present the possible performance enhancement of DVB systems in terms of decoding latency and complexity when using optimized polar codes as a Forward Error Correction (FEC) technique instead of Bose Chaudhuri Hocquenghem (BCH) and LDPC codes that are currently adopted in DVB standards.


2021 ◽  
Vol 33 (9) ◽  
pp. 093305
Author(s):  
Kiumars Khani Aminjan ◽  
Milad Heidari ◽  
D. D. Ganji ◽  
Maryam Aliakbari ◽  
Fatemeh Salehi ◽  
...  

2021 ◽  
Vol 01 (03) ◽  
Author(s):  
Heyu Xu ◽  
Wenbo Li ◽  
Kebei Zhang ◽  
Fangzhou Fu

This paper aims to improve the autonomous operational capabilities of spacecraft. For a complex system with physical coupling and flexible attachments, an autonomous reconfiguration strategy based on reconfigurability evaluation is proposed. First, a quantitative evaluation index for reconfigurability is given based on operator theory to fully exploit the potential of system reconfigurability under resource constraints. Then, specific requirements and evaluation methods for autonomous reconfiguration are proposed in accordance with the results, thereby providing a theoretical reference for the design of reconfiguration strategy methods. Thus, reconfigurability is maximized from the design point of view. Finally, the validity and correctness of the method are verified by simulation.


Author(s):  
Alejandro Briones ◽  
Timothy Erdmann ◽  
Brent Rankin

Abstract This work presents an on-design component-level multiple-objective optimization of a small-scaled uncooled cavity-stabilized combustor. Optimization is performed at the maximum power condition of the engine thermodynamic cycle. The CFD simulations are managed by a supervised machine learning algorithm to divide a continuous and deterministic design space into non-dominated Pareto frontier and dominated design points. Steady, compressible three-dimensional simulations are performed using a multi-phase Realizable k-? RANS and non-adiabatic FPV combustion model. Conjugate heat transfer through the combustor liner is also considered. There are fifteen geometrical input parameters and four objective functions viz., maximization of combustion efficiency, and minimization of total pressure losses, pattern factor, and critical liner area factor. The baseline combustor design is based on engineering guidelines developed over the past two decades. The small-scale baseline design performs remarkably well. Direct optimization calculations are performed on this baseline design. In terms of Pareto optimality, the baseline design remains in the Pareto frontier throughout the optimization. However, the optimization calculations show improvement from an initial design point population to later iteration design points. The optimization calculations report other non-dominated designs in the Pareto frontier. The Euclidean distance from design points to the utopic point is used to select a "best" and "worst" design point for future fabrication and experimentation. The methodology to perform CFD optimization calculations of a small-scale uncooled combustor is expected to be useful for guiding the design and development of future gas turbine combustors.


2021 ◽  
Author(s):  
Alberto Scotti Del Greco ◽  
Stefano Francini ◽  
Daniele Di Benedetto ◽  
Vittorio Michelassi ◽  
Tomasz Jurek ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document