scholarly journals Non-existence of genuine (compact) quantum symmetries of compact, connected smooth manifolds

2020 ◽  
Vol 369 ◽  
pp. 107181 ◽  
Author(s):  
Debashish Goswami
2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


Sign in / Sign up

Export Citation Format

Share Document