Linkage of logarithmic capacity in potential theory and degenerate scale in the BEM for two tangent discs

2020 ◽  
Vol 102 ◽  
pp. 106135
Author(s):  
Jeng-Tzong Chen ◽  
Shyh-Rong Kuo ◽  
Yi-Ling Huang ◽  
Shing-Kai Kao
2011 ◽  
Vol 03 (04) ◽  
pp. 433-450
Author(s):  
ANDREAS THOM

Motivated by the study of spectral properties of self-adjoint operators in the integral group ring of a sofic group, we define and study integer operators. We establish a relation with classical potential theory and in particular the circle of results obtained by Fekete and Szegö, see [3, 4, 13]. More concretely, we use results by Rumely, see [12], on equidistribution of algebraic integers to obtain a description of those integer operator which have spectrum of logarithmic capacity less than or equal to one. Finally, we relate the study of integer operators to a recent construction by Petracovici and Zaharescu, see [10].


Author(s):  
Lucian Beznea ◽  
Nicu Boboc
Keyword(s):  

2020 ◽  
pp. 0958305X2097728
Author(s):  
Jiyeon Choi ◽  
Dong-Ik Slong ◽  
Won Sik Shin

This study investigated the sorption of phenol and 4-chlorophenol (4-CP) on natural bentonite modified with hexadecyltrimethylammonium (HDTMA) cation. The Freundlich, Langmuir, Dubinin−Radushkevich (DR), Sips, and Polanyi−Dubinin−Manes (PDM) models fitted the sorption data well (R2 > 0.92). The Freundlich coefficient and the maximum sorbed amount of the Langmuir and PDM models of 4-CP were higher than phenol because of higher hydrophobicity (log Kow = 2.39 for 4-CP and 1.46 for phenol). The PDM model that includes solubility and molar volume was highly useful in predicting the sorption of phenols having widely different hydrophobicity and solubility. The characteristic curves, the plot of sorbed volume ( qv) versus the sorption potential per molar volume ( ε/ Vm) of 4-CP and phenol were distinctly different although they have similar chemical compositions. The selectivity of 4-CP (3.72) was higher than that of phenol (0.27) in binary sorption systems. The sorbed volume ( qv) in the binary sorption was remarkably reduced and the characteristic curve had wider distribution owing to competition in pore-filling. The sorption behaviors were elucidated by partitioning and pore-filling mechanisms. Among the tested binary sorption models, the modified Langmuir competitive model was the best in the prediction of the binary sorption (R2 > 0.98).


Sign in / Sign up

Export Citation Format

Share Document