sorption systems
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Mihail Malko ◽  
◽  
Sergey Vasilevich ◽  
Andrei Mitrofanov ◽  
Vadim Mizonov ◽  
...  

At present, instead of a direct combustion of solid fuel, its thermochemical conversion is exten-sively used to produce a generator gas. The use of this technology is connected with the need for gas purification. One of the promising and widely spread sorbents for the purification of the generator gas is dolomite, whose particles compose the active component of the bed filters. Forecasting the technological characteristics of the functioning of the bed filters of a various de-sign is an extremely urgent task. The objective of the study is to develop a method for forecast-ing and calculating the operation of sorption systems for purification of the generator gas based on dolomite. It is achieved by constructing and verifying a mathematical model of the function-ing of the bed sorption filter with a radial-axial flow pattern of the generator gas through the do-lomite filling. The Markov chains theory of a mathematical apparatus is used to design the one-dimensional mathematical model of the process with discrete space and time. The main recurrent balance ratio is formed at each calculation step taking into account the current characteristics of the process, which makes the model nonlinear. The significance of the research is that an approach to the problem of increasing the reliability of the description and reliability of forecasting technological processes in a bed filter was proposed based on the construction of mathematical models of these processes, in which the filter is considered as a system with distributed characteristics, and the calculation was based on local exchange potentials between particles and gas.


2021 ◽  
Vol 229 ◽  
pp. 111118
Author(s):  
Jingjing Zhu ◽  
Can Gao ◽  
Fanhe Kong ◽  
Kai Zhang ◽  
Zhiqing Bai ◽  
...  

Author(s):  
Larysa Ratel ◽  
Frédéric Kuznik ◽  
Kévyn Johannes
Keyword(s):  

Author(s):  
Andrea Frazzica ◽  
Vincenza Brancato ◽  
Valeria Palomba

2020 ◽  
pp. 0958305X2097728
Author(s):  
Jiyeon Choi ◽  
Dong-Ik Slong ◽  
Won Sik Shin

This study investigated the sorption of phenol and 4-chlorophenol (4-CP) on natural bentonite modified with hexadecyltrimethylammonium (HDTMA) cation. The Freundlich, Langmuir, Dubinin−Radushkevich (DR), Sips, and Polanyi−Dubinin−Manes (PDM) models fitted the sorption data well (R2 > 0.92). The Freundlich coefficient and the maximum sorbed amount of the Langmuir and PDM models of 4-CP were higher than phenol because of higher hydrophobicity (log Kow = 2.39 for 4-CP and 1.46 for phenol). The PDM model that includes solubility and molar volume was highly useful in predicting the sorption of phenols having widely different hydrophobicity and solubility. The characteristic curves, the plot of sorbed volume ( qv) versus the sorption potential per molar volume ( ε/ Vm) of 4-CP and phenol were distinctly different although they have similar chemical compositions. The selectivity of 4-CP (3.72) was higher than that of phenol (0.27) in binary sorption systems. The sorbed volume ( qv) in the binary sorption was remarkably reduced and the characteristic curve had wider distribution owing to competition in pore-filling. The sorption behaviors were elucidated by partitioning and pore-filling mechanisms. Among the tested binary sorption models, the modified Langmuir competitive model was the best in the prediction of the binary sorption (R2 > 0.98).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gholamreza Bamorovat Abadi ◽  
Majid Bahrami

AbstractMicro-grooves are a crucial feature in many applications, such as microelectro-mechanical systems, drug delivery, heat pipes, sorption systems, and microfluidic devices. Micro-grooves utilize capillary action to deliver a liquid, with no need for an extra pumping device, which makes them unique and desirable for numerous systems. Although the capillary action is well studied, all the available equations for the capillary rise are case-specific and depend on the geometry of the groove, surface properties, and the transport liquid. In this study, a unified non-dimensional model for capillary rise is proposed that can accurately predict the capillary rise for any given groove geometry and condition and only depends on two parameters: contact angle and characteristic length scale, defined as the ratio of the liquid–vapor to the solid–liquid interface. The proposed model is compared against data from the literature and can capture the experimental results with less than 10% relative difference. The effect of the grooves’ height, width, and contact angle is investigated and reported. This study can be used for a unified approach in designing heat pipes, capillary-assisted evaporators for sorption systems, drug delivery micro-fluidic devices, etc.


Adsorption ◽  
2020 ◽  
Vol 26 (8) ◽  
pp. 1355-1364
Author(s):  
Marta Wójcik ◽  
Grzegorz S. Jodłowski

Abstract Multiple Sorption Model (MSM) is used to simulate sorption isotherms and the effect of the multiplicity of physicochemical parameters is reduced by introducing an invariant procedure using a few sorbates that are small molecules. This study presents the use of water, methanol, carbon dioxide and methane as test molecules to determine the structure and texture of coal and energy parameters. Parallel calculations for a set of sorption systems on the same coal sample recursively yield the most probable estimates. The procedure was tested for 6 coal samples with different carbon content. Effect of simulations made by MSM is evaluated on measurements of sorption isotherms. Result obtained by the analysis shows that smaller submicropores are in better contact with sorbate molecule and bigger one contact is weaker-contacts play vital role in energy contribution to the molecule. Tendency of significant absorption for CO2 and CH3OH and insignificant for H2O and CH4 is confirmed on the basis of thermodynamic dissertation/calculation.


2020 ◽  
Vol 62 (2) ◽  
pp. 141-160
Author(s):  
I. V. Volkov ◽  
E. V. Polyakov
Keyword(s):  

Author(s):  
Larisa G. Gordeeva ◽  
Alexandr I. Shkatulov ◽  
Yuri I. Aristov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document