scholarly journals Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland

2021 ◽  
Vol 298 ◽  
pp. 117199
Author(s):  
Pietari Puranen ◽  
Antti Kosonen ◽  
Jero Ahola
2013 ◽  
Vol 04 (02) ◽  
pp. 167-180 ◽  
Author(s):  
Mohammad T. Arif ◽  
Amanullah M. T. Oo ◽  
A. B. M. Shawkat Ali ◽  
G. M. Shafiullah

2019 ◽  
Vol 21 (6) ◽  
pp. 1587-1601 ◽  
Author(s):  
Matheus Martins Lopes ◽  
Vladimir Rafael Melián Cobas ◽  
Regina Mambeli Barros ◽  
Electo Eduardo Silva Lora ◽  
Ivan Felipe Silva dos Santos

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3937 ◽  
Author(s):  
Sangyoon Lee ◽  
Dae-Hyun Choi

This paper presents a data-driven approach that leverages reinforcement learning to manage the optimal energy consumption of a smart home with a rooftop solar photovoltaic system, energy storage system, and smart home appliances. Compared to existing model-based optimization methods for home energy management systems, the novelty of the proposed approach is as follows: (1) a model-free Q-learning method is applied to energy consumption scheduling for an individual controllable home appliance (air conditioner or washing machine), as well as the energy storage system charging and discharging, and (2) the prediction of the indoor temperature using an artificial neural network assists the proposed Q-learning algorithm in learning the relationship between the indoor temperature and energy consumption of the air conditioner accurately. The proposed Q-learning home energy management algorithm, integrated with the artificial neural network model, reduces the consumer electricity bill within the preferred comfort level (such as the indoor temperature) and the appliance operation characteristics. The simulations illustrate a single home with a solar photovoltaic system, an air conditioner, a washing machine, and an energy storage system with the time-of-use pricing. The results show that the relative electricity bill reduction of the proposed algorithm over the existing optimization approach is 14%.


Sign in / Sign up

Export Citation Format

Share Document