Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization

Author(s):  
Jennifer N. Mills ◽  
Maria Katzarova ◽  
Norman J. Wagner
2017 ◽  
Vol 131 ◽  
pp. 45-49 ◽  
Author(s):  
A.N. Scott ◽  
C. Oze ◽  
Y. Tang ◽  
A. O’Loughlin

1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

Author(s):  
Robert P. Mueller ◽  
Ivan I. Townsend, III ◽  
James G. Mantovani
Keyword(s):  

Open Ceramics ◽  
2020 ◽  
Vol 3 ◽  
pp. 100008
Author(s):  
David Karl ◽  
Franz Kamutzki ◽  
Pedro Lima ◽  
Albert Gili ◽  
Thomas Duminy ◽  
...  
Keyword(s):  

2020 ◽  
Vol 117 (50) ◽  
pp. 31685-31689
Author(s):  
Pralay Gayen ◽  
Shrihari Sankarasubramanian ◽  
Vijay K. Ramani

NASA’s current mandate is to land humans on Mars by 2033. Here, we demonstrate an approach to produce ultrapure H2 and O2 from liquid-phase Martian regolithic brine at ∼−36 °C. Utilizing a Pb2Ru2O7−δ pyrochlore O2-evolution electrocatalyst and a Pt/C H2-evolution electrocatalyst, we demonstrate a brine electrolyzer with >25× the O2 production rate of the Mars Oxygen In Situ Resource Utilization Experiment (MOXIE) from NASA’s Mars 2020 mission for the same input power under Martian terrestrial conditions. Given the Phoenix lander’s observation of an active water cycle on Mars and the extensive presence of perchlorate salts that depress water’s freezing point to ∼−60 °C, our approach provides a unique pathway to life-support and fuel production for future human missions to Mars.


Sign in / Sign up

Export Citation Format

Share Document