freezing point
Recently Published Documents


TOTAL DOCUMENTS

2074
(FIVE YEARS 302)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Sergei Yu. Zaitsev ◽  
Oksana A. Voronina ◽  
Anastasia A. Savina ◽  
Larisa P. Ignatieva ◽  
Nadezhda V. Bogolyubova

The aim of the work was to study the correlations between the total amount of water-soluble antioxidants (TAWSA) and biochemical parameters (BC) of cow milk depending on the somatic cell count (SCC). The BC and TAWSA values of cow milk were measured by spectroscopic and amperometric methods, respectively. The milk samples from the black-and-white cows (Moscow region) were divided according to SCС values: (1) ≤200, (2) 200-499, (3) 500-999, and (4) ≥1000 thousand units/mL. The average TAWSA values for groups 1, 2, 3, and 4 (33, 15, 13, and 12 milk samples) were the following: 15.95 ± 0.74 , 14.45 ± 0.84 , 16.04 ± 0.63 , and 14.58 ± 1.18 . The correlations between TAWSA and BC (group 1) were the following: total fat percentage (TFP) -0.305; true protein percentage (TP1) -0.197; total nitrogen percentage (TN2) -0.210; lactose -0.156; solids-not-fat (SNF) -0.276; total dry matter (TDM) -0.399; freezing point (FP) -0.112; pH -0.114; somatic cell count (SCC) - (-0,052). The correlations between TAWSA and BC (group 2) were the following: TFP -0.332; TP1 -0.296; TN2 -0.303; lactose - (-0.308); SNF -0.159; TDM -0.391; FP -0.226; pH - (-0.211); SCC -0.193. The correlations between TAWSA and BC (group 3) were the following: TFP - (-0.352); TP1 - (-0.411); TN2 – (-0.401); lactose - (-0.166); SNF - (-0.462); TDM - (-0.504); FP - (-0.766); pH - (-0.047); SCC - (-0.698). The correlations between TAWSA and BC (group 4) were the following: TFP -0.159; TP1 -0.046; TN2 – 0.077; lactose - (-0.317); SNF - (-0.237); TDM -0.058; FP - (-0.036); pH - (-0.477); SCC - (-0.072). These data are important in assessing the physiological-biochemical status and state of the antioxidant defense system of cows’ organism.


2022 ◽  
Vol 14 (2) ◽  
pp. 752
Author(s):  
Ziwei Han ◽  
Peiyao Chen ◽  
Meifang Hou ◽  
Qianqian Li ◽  
Guijin Su ◽  
...  

Hydrogels, as an emerging extinguishant, exhibit outstanding performance in forest fire rescues. However, the near-zero freezing point limits their application at low temperatures. Herein, a sensible candidate commercial extinguishant was selected for analysis, and its freezing point was modified based on the evaluation of water absorption rate, agglomeration, viscosity, and water dispersibility. Notably, the introduction of different antifreeze and flame retardant exhibited a significant disparate impact on the viscosity representative factor. Ten orthogonal experiments were performed to optimize the specific formulation. When ethylene glycol, urea and ammonium bicarbonate, and xanthan gum were applied as antifreeze, flame retardant, and thickener, with the addition amounts of 5 mL, 0.08 g and 0.04 g, and 0.12 g, respectively, the hydrogel extinguishant with 1% ratio in 50 mL of ultra-water featured the remarkable performance. Compared with the original extinguishant, the freezing point of the modified sample decreased from −0.3 to −9.2 °C. The sample’s viscosity was improved from 541 to 1938 cP, and the flame retardance time was more than 120 s. The results of corrosion and biotoxicity show that the optimized hydrogel extinguishant satisfies the national standards. This understanding provides a deeper insight into the application of low-temperature extinguishants in forest fires.


2022 ◽  
Author(s):  
Feda S. Aljaser

The development in cryobiology in animal breeding had revolutionized the field of reproductive medicine. The main objective to preserve animal germplasm stems from variety of reasons such as conservation of endangered animal species, animal diversity, and an increased demand of animal models and/or genetically modified animals for research involving animal and human diseases. Cryopreservation has emerged as promising technique for fertility preservation and assisted reproduction techniques (ART) for production of animal breeds and genetically engineered animal species for research. Slow rate freezing and rapid freezing/vitrification are the two main methods of cryopreservation. Slow freezing is characterized by the phase transition (liquid turning into solid) when reducing the temperature below freezing point. Vitrification, on the other hand, is a phenomenon in which liquid solidifies without the formation of ice crystals, thus the process is referred to as a glass transition or ice-free cryopreservation. The vitrification protocol applies high concentrations of cryoprotective agents (CPA) used to avoid cryoinjury. This chapter provides a brief overview of fundamentals of cryopreservation and established methods adopted in cryopreservation. Strategies involved in cryopreserving germ cells (sperm and egg freezing) are included in this chapter. Last section describes the frontiers and advancement of cryopreservation in some of the important animal models like rodents (mouse and rats) and in few large animals (sheep, cow etc).


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Florian G. Weller ◽  
William S. Beatty ◽  
Elisabeth B. Webb ◽  
Dylan C. Kesler ◽  
David G. Krementz ◽  
...  

Abstract Background The timing of autumn migration in ducks is influenced by a range of environmental conditions that may elicit individual experiences and responses from individual birds, yet most studies have investigated relationships at the population level. We used data from individual satellite-tracked mallards (Anas platyrhynchos) to model the timing and environmental drivers of autumn migration movements at a continental scale. Methods We combined two sets of location records (2004–2007 and 2010–2011) from satellite-tracked mallards during autumn migration in the Mississippi Flyway, and identified records that indicated the start of long-range (≥ 30 km) southward movements during the migration period. We modeled selection of departure date by individual mallards using a discrete choice model accounting for heterogeneity in individual preferences. We developed candidate models to predict the departure date, conditional on daily mean environmental covariates (i.e. temperature, snow and ice cover, wind conditions, precipitation, cloud cover, and pressure) at a 32 × 32 km resolution. We ranked model performance with the Bayesian Information Criterion. Results Departure was best predicted (60% accuracy) by a “winter conditions” model containing temperature, and depth and duration of snow cover. Models conditional on wind speed, precipitation, pressure variation, and cloud cover received lower support. Number of days of snow cover, recently experienced snow cover (snow days) and current snow cover had the strongest positive effect on departure likelihood, followed by number of experienced days of freezing temperature (frost days) and current low temperature. Distributions of dominant drivers and of correct vs incorrect prediction along the movement tracks indicate that these responses applied throughout the latitudinal range of migration. Among recorded departures, most were driven by snow days (65%) followed by current temperature (30%). Conclusions Our results indicate that among the tested environmental parameters, the dominant environmental driver of departure decision in autumn-migrating mallards was the onset of snow conditions, and secondarily the onset of temperatures close to, or below, the freezing point. Mallards are likely to relocate southwards quickly when faced with snowy conditions, and could use declining temperatures as a more graduated early cue for departure. Our findings provide further insights into the functional response of mallards to weather factors during the migration period that ultimately determine seasonal distributions.


Author(s):  
Xiangang Zhou ◽  
Songhe Wang ◽  
Xiaoliang Yao ◽  
Weihang Ye ◽  
Jiulong Ding

Author(s):  
Mohammed Aman Mujeeb

Abstract: In this investigation a model was made to replicate the working of a shock absorber and the liquid that is used in place of the hydraulic fluid was vegetable oil. Hydraulic fluid is composed of a mineral oil base stock [1]. The working of the model of a shock absorber was tested at different temperatures. It is studied that the relation between the temperature and the time taken by the load attached to the spring to stop oscillating and presented in graph. An optimum temperature, at which the time taken by the mass of 1.50 kilograms suspended in the vegetable oil to stop oscillating and it is the least mass used in the study. In addition to this, the freezing point of the vegetable oil will also be found. It is found in this study that the two variables that is temperature of the vegetable oil and the mass of 1.5 kilograms at rest is linear. Keywords: Temperature Variation, Oil, Oscillation, Mass, Load.


Author(s):  
И.А. ЛАШНЕВА ◽  
А.А. КОСИЦИН

На основе анализа компонентного состава молока проведено изучение белковой и жировой фракций, метаболитов веществ и соматических клеток для голштинизированных черно-пестрых коров и карачаевских коз в сравнительном аспекте. Молоко коров предназначалось для переработки, а молоко коз использовалось для выкармливания козлят. В этой связи представляет интерес использование экспресс-метода инфракрасной (ИК) спектроскопии для исследования точности прогностической модели анализа молока от разных видов животных, в частности, для определения в образцах содержания жирных кислот (ЖК). Скрининг молока по 25 показателям выполняли с помощью анализатора CombiFOSS 7 DSCC. Установлено, что в молоке коз было достоверно больше жира и белка, насыщенных ЖК (69,59% против 65,67% в коровьем) и более значимых для питания человека полиненасыщенных ЖК (4,05% против 3,66% у коров). Коэффициент детерминации показал высокую значимость совокупных факторов, включенных в GLM-уравнение, для массовой доли лактозы (23,9%), короткоцепочечных ЖК (28,1%), ацетона (24,3%), бетагидроксибутирата (37,9%), точки замерзания молока (46,0%) и мочевины (85,1%). Корреляции между компонентами имели биологическую направленность, характерную для процессов синтеза молока в организме жвачных животных. Проведенный комплексный анализ показал перспективность ИК-спектров для использования как в менеджменте стада коров и коз, так и в накоплении информации для изучения генетической детерминации процессов образования молока у сельскохозяйственных животных. The protein and fat fractions, metabolites and somatic cells count for Holsteinized Black-and-White cows and Karachai goats were studied by in a comparative aspect. The cows’ milk was intended for processing, and milk of goats was used to feed the goatlet. In this regard, to use the express method of infrared (MIR) spectroscopy to study the accuracy of the predictive model for analyzing milk from different animal species, in particular, to determine the content of fatty acids (FA) was interesting. Milk screening for 25 parameters was performed using a CombiFOSS 7 DSCC analyzer. It was found that under the same paratypical conditions, there was significantly more fat and protein in goat milk, however, in terms of lactose content, milk pH values were higher in cows’ milk. Goat milk has a higher content of saturated FAs (69.59% opp. 65.67% in cow milk) and polyunsaturated FAs that are more significant for human nutrition (4.05% opp. 3.66% in cows). The determination coefficient showed the high significance of the aggregate factors included in the GLM equation for the lactose percentage (23.9%), short-chain FA (28.1%), acetone (24.3%), betahydroxybutyrate (37.9%), milk freezing point (46.0%) and urea (85.1%). The correlations between components had a biological orientation that characterized for the milk synthesis processes into the body of ruminants. The analysis showed that MIR spectra are promising for use in the management of a herd of cows and goats, and in the information accumulation for studying the genetic determination of milk processes synthesis in animals.


2021 ◽  
Author(s):  
Jueyong Feng ◽  
Hongtao Liu ◽  
Kun Huang ◽  
Ju Liu ◽  
Maotang Yao ◽  
...  

Abstract The buried depth of gas reservoir B is more than 6700m, the thickness of reservoir is about 180m, the porosity of reservoir matrix is mainly 5.0% - 7.0%, with an average of 6.3%, and the permeability of reservoir matrix is mainly 0.01-0.1mD, The average production capacity of the three wells is 0.08mD, the formation pressure is 116-126MPa, the formation temperature is 124-131°C, the wax content of the condensate oil is high, and the average wax content is 16.9%. In the early stage, the natural productivity of the three wells was low, and the daily gas production was 120000-180000 cubic meters after stimulation. During the production process, the wellhead temperature was 20°C-25°C, the wax freezing temperature was 35°C, and the wellbore wax plugging was serious, The wellbore was blocked, the gas well was forced to shut down, and the reserves of 100 billion cubic meters were unable to be used, so it was necessary to explore new wax control technology. Through investigation, a new type of solid particle paraffin inhibitor is introduced, which can enter the artificial fracture with proppant during fracturing. When the condensate gas passes through the fracture, it washes the solid paraffin inhibitor which enters with proppant, and becomes the condensate gas containing paraffin control components.Therefore,it is not easy to form wax after entering the wellbore, which makes the problem of wellbore paraffin formation change from "passive control" to "active control". Referring to the relevant experimental standards, the conductivity, crushing test, solid paraffin inhibitor and fracturing fluid compatibility test were carried out. The existing test standards of wax freezing point are all for waxy oil under normal pressure, but not for condensate gas. A set of innovative experimental method is designed to successfully test the wax freezing point of condensate gas containing wax control components, and obtain the wax control effect under different ratios of wax control agent and proppant, so as to optimize the amount of wax control agent used in the experiment. The results show that the solid paraffin inhibitor has good dispersibility and suspension, and has little influence on the conductivity of sand filled fractures. The paraffin control effect on condensate oil and gas in this block is good. The wax freezing point can be reduced by about 12°C-18°C, and the optimal dosage is proppant 1%-2%. Field test was carried out in B gas reservoir. After fracturing, 5mm nozzle was used for production, tubing pressure was 83.6MPa, wellhead temperature was 28.8°C, daily oil production was 10.72 cubic meters, daily gas production was 217000 cubic meters, wellhead temperature was lower than wax freezing temperature in this area. At present, it has been in production for 6 months, and there is no wax deposit in wellbore. The successful test of solid paraffin inhibitor in the fracturing of Kuqa ultra deep high pressure and high wax content tight condensate gas reservoir provides a powerful technical reference for the wellbore flow guarantee of condensate gas reservoir.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8164
Author(s):  
Byeong Gyu Jeong ◽  
Kwang Chul Oh ◽  
Seong Uk Jang

The urea-selective catalytic reduction (SCR) system, a nitrogen oxide reduction device for diesel vehicles, is a catalytic system that uses urea water solution (UWS) as a reducing agent. This system has a relatively wide range of operating temperatures. However, the freezing point of the reducing urea solution used in this system is −11 °C. When the ambient temperature dips below this freezing point in winter, the solution may freeze. Therefore, it is important to understand the melting characteristics of frozen UWS in relation to the operating conditions of the heating device to supply the minimum amount of aqueous solution required by the system in the initial stage of normal operation and startup of the urea–SCR system. In this study, we artificially froze a liquid solution by placing it along with a heating module in an acrylic chamber to simulate a urea solution tank. Two types of heating modules (P120 and P160) consisting of two heating elements and heat transfer bodies were used to melt the frozen solution. The melting characteristics of the frozen solution were observed, for example, changes in the temperature distribution around the heating module and the cross-sectional melting shape with the passage of time since the start of the power supply to the heating module. The shape of melting around the heating module differed depending on the level of UWS relative to the heater inside the urea tank. In case 1, it melted in a wide shape with an open top, and in case 2, it melted in a closed shape. This shape change was attributed to the formation of internal gaseous space due to volume reduction during melting and the heat transfer characteristics of the fluid and solid substances.


Sign in / Sign up

Export Citation Format

Share Document