scholarly journals ATP biphasically modulates LLPS of SARS-CoV-2 nucleocapsid protein and specifically binds its RNA-binding domain

2021 ◽  
Vol 541 ◽  
pp. 50-55
Author(s):  
Mei Dang ◽  
Yifan Li ◽  
Jianxing Song
2021 ◽  
Vol 12 ◽  
Author(s):  
Qiaozhen Ye ◽  
Shan Lu ◽  
Kevin D. Corbett

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, is the most severe public health event of the twenty-first century. While effective vaccines against SARS-CoV-2 have been developed, there remains an urgent need for diagnostics to quickly and accurately detect infections. Antigen tests, particularly those that detect the abundant SARS-CoV-2 Nucleocapsid protein, are a proven method for detecting active SARS-CoV-2 infections. Here we report high-resolution crystal structures of three llama-derived single-domain antibodies that bind the SARS-CoV-2 Nucleocapsid protein with high affinity. Each antibody recognizes a specific folded domain of the protein, with two antibodies recognizing the N-terminal RNA binding domain and one recognizing the C-terminal dimerization domain. The two antibodies that recognize the RNA binding domain affect both RNA binding affinity and RNA-mediated phase separation of the Nucleocapsid protein. All three antibodies recognize highly conserved surfaces on the Nucleocapsid protein, suggesting that they could be used to develop affordable diagnostic tests to detect all circulating SARS-CoV-2 variants.


Author(s):  
Sisi Kang ◽  
Mei Yang ◽  
Zhongsi Hong ◽  
Liping Zhang ◽  
Zhaoxia Huang ◽  
...  

AbstractThe outbreak of coronavirus disease (COVID-19) in China caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths. It is currently no specific viral protein targeted therapeutics yet. Viral nucleocapsid protein is a potential antiviral drug target, serving multiple critical functions during the viral life cycle. However, the structural information of SARS-CoV-2 nucleocapsid protein is yet to be clear. Herein, we have determined the 2.7 Å crystal structure of the N-terminal RNA binding domain of SARS-CoV-2 nucleocapsid protein. Although overall structure is similar with other reported coronavirus nucleocapsid protein N-terminal domain, the surface electrostatic potential characteristics between them are distinct. Further comparison with mild virus type HCoV-OC43 equivalent domain demonstrates a unique potential RNA binding pocket alongside the β-sheet core. Complemented by in vitro binding studies, our data provide several atomic resolution features of SARS-CoV-2 nucleocapsid protein N-terminal domain, guiding the design of novel antiviral agents specific targeting to SARS-CoV-2.


2021 ◽  
Author(s):  
Qiaozhen Ye ◽  
Shan Lu ◽  
Kevin D Corbett

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, is the most severe public health event of the twenty-first century. While effective vaccines against SARS-CoV-2 have been developed, there remains an urgent need for diagnostics to quickly and accurately detect infections. Antigen tests, particularly those that detect the abundant SARS-CoV-2 Nucleocapsid protein, are a proven method for detecting active SARS-CoV-2 infections. Here we report high-resolution crystal structures of three llama-derived single-domain antibodies that bind the SARS-CoV-2 Nucleocapsid protein with high affinity. Each antibody recognizes a specific folded domain of the protein, with two antibodies recognizing the N-terminal RNA binding domain and one recognizing the C-terminal dimerization domain. The two antibodies that recognize the RNA binding domain affect both RNA binding affinity and RNA-mediated phase separation of the Nucleocapsid protein. All three antibodies recognize highly-conserved surfaces on the Nucleocapsid protein, suggesting that they could be used to develop affordable diagnostic tests to detect all circulating SARS-CoV-2 variants.


Biochemistry ◽  
2004 ◽  
Vol 43 (20) ◽  
pp. 6059-6063 ◽  
Author(s):  
Qiulong Huang ◽  
Liping Yu ◽  
Andrew M. Petros ◽  
Angelo Gunasekera ◽  
Zhihong Liu ◽  
...  

2009 ◽  
Vol 96 (5) ◽  
pp. 1892-1901 ◽  
Author(s):  
Huey-Jen Fang ◽  
Yong-Zhong Chen ◽  
Mai Suan Li ◽  
Ming-Chya Wu ◽  
Chun-Ling Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document