terminal domain
Recently Published Documents





2022 ◽  
Vol 8 (1) ◽  
pp. 84
Marilia M. Knychala ◽  
Angela A. dos Santos ◽  
Leonardo G. Kretzer ◽  
Fernanda Gelsleichter ◽  
Maria José Leandro ◽  

In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover.

2022 ◽  
Naveenchandra Suryadevara ◽  
Andrea Shiakolas ◽  
Laura VanBlargan ◽  
Elad Binshtein ◽  
Rita Chen ◽  

The protective human antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus focuses on the spike (S) protein which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope (supersite) on the N terminal domain (NTD). Here, using the single B cell technology LIBRA-seq, we isolated a large panel of NTD-reactive and SARS-CoV-2 neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies to the NTD supersite commonly are encoded by the IGHV1-24 gene, forming a genetic cluster that represents a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited cell-to-cell spread of virus in culture, and conferred protection in human ACE2 transgenic mice against SARS-CoV-2 challenge. This study provides insight about antibody targeting of the S protein trimer interface region, suggesting this region may be a site of virus vulnerability.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 386
Jon K. Obst ◽  
Nasrin R. Mawji ◽  
Simon J. L. Teskey ◽  
Jun Wang ◽  
Marianne D. Sadar

Hormonal therapies for prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD). Clinical development for inhibitors that bind to the N-terminal domain (NTD) of AR has yielded ralaniten and its analogues. Ralaniten acetate is well tolerated in patients at 3600 mgs/day. Clinical trials are ongoing with a second-generation analogue of ralaniten. Binding sites on different AR domains could result in differential effects on AR-regulated gene expression. Here, we provide the first comparison between AR-NTD inhibitors and AR-LBD inhibitors on androgen-regulated gene expression in prostate cancer cells using cDNA arrays, GSEA, and RT-PCR. LBD inhibitors and NTD inhibitors largely overlapped in the profile of androgen-induced genes that they each inhibited. However, androgen also represses gene expression by various mechanisms, many of which involve protein–protein interactions. De-repression of the transcriptome of androgen-repressed genes showed profound variance between these two classes of inhibitors. In addition, these studies revealed a unique and strong induction of expression of the metallothionein family of genes by ralaniten by a mechanism independent of AR and dependent on MTF1, thereby suggesting this may be an off-target. Due to the relatively high doses that may be encountered clinically with AR-NTD inhibitors, identification of off-targets may provide insight into potential adverse events, contraindications, or poor efficacy.

2022 ◽  
Vol 23 (2) ◽  
pp. 762
Kamila Dilimulati ◽  
Misaki Orita ◽  
Yoshiki Yonahara ◽  
Fabiana Lica Imai ◽  
Naoto Yonezawa

The species-selective interaction between sperm and egg at the beginning of mammalian fertilisation is partly mediated by a transparent envelope called the zona pellucida (ZP). The ZP is composed of three or four glycoproteins (ZP1–ZP4). The functions of the three proteins present in mice (ZP1–ZP3) have been extensively studied. However, the biological role of ZP4, which was found in all other mammals studied so far, has remained largely unknown. Previously, by developing a solid support assay system, we showed that ZP4 exhibits sperm-binding activity in bovines and the N-terminal domain of bovine ZP4 (bZP4 ZP-N1 domain) is a sperm-binding region. Here, we show that bovine sperm bind to the bZP4 ZP-N1 domain in a species-selective manner and that N-glycosylation is not required for sperm-binding activity. Moreover, we identified three sites involved in sperm binding (site I: from Gln-41 to Pro-46, site II: from Leu-65 to Ser-68 and site III: from Thr-108 to Ile-123) in the bZP4 ZP-N1 domain using chimeric bovine/porcine and bovine/human ZP4 recombinant proteins. These results provide in vitro experimental evidence for the role of the bZP4 ZP-N1 domain in mediating sperm binding to the ZP.

2022 ◽  
Nell Saunders ◽  
Delphine Planas ◽  
William Henry Bolland ◽  
Christophe Rodriguez ◽  
Slim Fourati ◽  

SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in UK and has been detected in dozens of countries. It has since then been supplanted by the Omicron variant. AY.4.2 displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain (NTD) of the spike when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. Here, we analyzed the fusogenicity of the AY.4.2 spike and the sensitivity of an authentic AY.4.2 isolate to neutralizing antibodies. The AY.4.2 spike exhibited similar fusogenicity and binding to ACE2 than Delta. The sensitivity of infectious AY.4.2 to a panel of monoclonal neutralizing antibodies was similar to Delta, except for the anti-RBD Imdevimab, which showed incomplete neutralization. Sensitivity of AY.4.2 to sera from individuals having received two or three doses of Pfizer or two doses of AstraZeneca vaccines was reduced by 1.7 to 2.1 fold, when compared to Delta. Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The temporary spread of AY.4.2 was not associated with major changes in spike function but rather to a partially reduced neutralization sensitivity.

2022 ◽  
Vol 8 ◽  
Xiaozhuo Liu ◽  
Houtan Moshiri ◽  
Qian He ◽  
Ansuman Sahoo ◽  
Sarah E. Walker

The yeast eukaryotic initiation factor 4B binds the 40S subunit in translation preinitiation complexes (PICs), promoting mRNA recruitment. Recent evidence indicates yeast mRNAs have variable dependence on eIF4B under optimal growth conditions. Given the ability of eIF4B to promote translation as a function of nutrient conditions in mammalian cells, we wondered if eIF4B activities in translation could alter phenotypes in yeast through differential mRNA selection for translation. Here we compared the effects of disrupting yeast eIF4B RNA- and 40S-binding motifs under ∼1400 growth conditions. The RNA-Recognition Motif (RRM) was dispensable for stress responses, but the 40S-binding N-terminal Domain (NTD) promoted growth in response to stressors requiring robust cellular integrity. In particular, the NTD conferred a strong growth advantage in the presence of urea, which may be important for pathogenesis of related fungal species. Ribosome profiling indicated that similar to complete eIF4B deletion, deletion of the NTD dramatically reduced translation, particularly of those mRNAs with long and highly structured 5-prime untranslated regions. This behavior was observed both with and without urea exposure, but the specific mRNA pool associated with ribosomes in response to urea differed. Deletion of the NTD led to relative increases in ribosome association of shorter transcripts with higher dependence on eIF4G, as was noted previously for eIF4B deletion. Gene ontology analysis indicated that proteins encoded by eIF4B NTD-dependent transcripts were associated with the cellular membrane system and the cell wall, while NTD-independent transcripts encoded proteins associated with cytoplasmic proteins and protein synthesis. This analysis highlighted the difference in structure content of mRNAs encoding membrane versus cytoplasmic housekeeping proteins and the variable reliance of specific gene ontology classes on various initiation factors promoting otherwise similar functions. Together our analyses suggest that deletion of the eIF4B NTD prevents cellular stress responses by affecting the capacity to translate a diverse mRNA pool.

2022 ◽  
Benjamin J. Orlando ◽  
Pawel K. Dominik ◽  
Sourav Roy ◽  
Chinemerem Ogbu ◽  
Satchal K. Erramilli ◽  

Strains of the Gram-positive bacterium Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflict millions of humans and domesticated animals annually by causing prevalent gastrointestinal illnesses. CpEs C-terminal domain (cCpE) binds cell surface receptors then its N-terminal domain restructures to form a membrane-penetrating 𝛽-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are the receptors for CpE, and also control the architecture and function of cell/cell contacts called tight junctions that create barriers to intercellular transport of solutes. CpE binding disables claudin and tight junction assembly and induces cytotoxicity via 𝛽-pore formation, disrupting gut homeostasis. Here, we aimed to develop probes of claudin/CpE assembly using a phage display library encoding synthetic antigen-binding fragments (sFabs) and discovered two that bound complexes between human claudin-4 and cCpE. We established each sFabs unique modes of molecular recognition, their binding affinities and kinetics, and determined structures for each sFab bound to ~35 kDa claudin-4/cCpE in three-protein comprised complexes using cryogenic electron microscopy (cryoEM). The structures reveal a recognition epitope common to both sFabs but also that each sFab distinctly conforms to bind their antigen, which explain their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in further binding changes. Together, these findings validate the structures and uncover the mechanism of targeting claudin-4/cCpE complexes by these sFabs. Based on these structural insights we generate a model for CpEs cytotoxic claudin-bound 𝛽-pore that predicted that these two sFabs would not prevent CpE cytotoxicity, which we verify in vivo with a cell-based assay. This work demonstrates the development and targeting mechanisms of sFabs against claudin/cCpE that enable rapid structural elucidation of these small membrane protein complexes using a cryoEM workflow. It further provides a structure-based framework and therapeutic strategies for utilizing these sFabs as molecular templates to target claudin/CpE assemblies, obstruct CpE cytotoxicity, and treat CpE-linked gastrointestinal diseases that cause substantial economic and quality of life losses throughout the world.

Susana Méndez-Gómez ◽  
Heidi Espadas-Álvarez ◽  
Ivette Ramírez-Rodríguez ◽  
Lilianha Domínguez-Malfavón ◽  
Refugio García-Villegas

Placenta ◽  
2022 ◽  
Vol 117 ◽  
pp. 139-149
Andrea L. Miranda ◽  
Ana C. Racca ◽  
Lucille T. Kourdova ◽  
Maria Laura Rojas ◽  
Mariano Cruz Del Puerto ◽  

Sign in / Sign up

Export Citation Format

Share Document