Abstract
COVID-19 pandemic is continue with thousands of new cases every day around the world, even then different vaccines have been developed and proven efficacious against SARS-CoV-2. Several know antivirals drugs have been repurposed or tested against SARS-CoV-2 but we still don’t have an effective therapeutic strategy to control this viral infection. Moreover, in the race of finding out an efficient antiviral, excess uses of antiviral drugs developed a selective pressure on the virus that results in the high frequency of mutations and the possible emergence of antiviral drug resistance against SARS-CoV-2. Omicron is a recently emerged, highly mutated variant of SARS-CoV-2, reported for high infectivity. In the present study, we performed molecular docking analysis between available potential antiviral drugs (remdesivir, nirmatrelvir, molnupiravir, EIDD-1931, GS-441524, and favipiravir) and omicron S protein including S protein/ACE2 complex. Our results suggest high infectivity of omicron, however, the known antiviral drugs were found efficacious against omicron variant. Further, to investigate the high infectivity of omicron, we performed a docking experiment between omicron S protein and neuropilin1 (NRP1). Surprisingly, results suggest high affinities with NRP1 than ACE2. Overall, results suggest that omicron favors NRP1 binding over ACE2, the possible reason behind improved infectivity of omicron variant.