scholarly journals Distinct Conformational Changes of MutS during DNA Mismatch Repair

2011 ◽  
Vol 100 (3) ◽  
pp. 240a
Author(s):  
Jong-Bong Lee ◽  
Cherlhyun Jeong ◽  
Won-Ki Cho ◽  
Changill Ban ◽  
Richard Fishel
2000 ◽  
Vol 20 (17) ◽  
pp. 6390-6398 ◽  
Author(s):  
Phuoc T. Tran ◽  
R. Michael Liskay

ABSTRACT Saccharomyces cerevisiae MutL homologues Mlh1p and Pms1p form a heterodimer, termed MutLα, that is required for DNA mismatch repair after mismatch binding by MutS homologues. Recent sequence and structural studies have placed the NH2 termini of MutL homologues in a new family of ATPases. To address the functional significance of this putative ATPase activity in MutLα, we mutated conserved motifs for ATP hydrolysis and ATP binding in both Mlh1p and Pms1p and found that these changes disrupted DNA mismatch repair in vivo. Limited proteolysis with purified recombinant MutLα demonstrated that the NH2 terminus of MutLα undergoes conformational changes in the presence of ATP and nonhydrolyzable ATP analogs. Furthermore, two-hybrid analysis suggested that these ATP-binding-induced conformational changes promote an interaction between the NH2 termini of Mlh1p and Pms1p. Surprisingly, analysis of specific mutants suggested differential requirements for the ATPase motifs of Mlh1p and Pms1p during DNA mismatch repair. Taken together, these results suggest that MutLα undergoes ATP-dependent conformational changes that may serve to coordinate downstream events during yeast DNA mismatch repair.


2021 ◽  
Author(s):  
Alessandro Borsellini ◽  
Vladislav Kunetsky ◽  
Peter Friedhoff ◽  
Meindert H. Lamers

DNA mismatch repair detects and removes mismatches from DNA reducing the error rate of DNA replication a 100-1000 fold. The MutS protein is one of the key players that scans for mismatches and coordinates the repair cascade. During this, MutS undergoes multiple conformational changes that initiate the subsequent steps, in response to ATP binding, hydrolysis, and release. How ATP induces the different conformations in MutS is not well understood. Here we present four cryo-EM structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle. These structures reveal how ATP binding and hydrolysis induces a closing and opening of the MutS dimer, respectively. Additional biophysical analysis furthermore explains how DNA binding modulates the ATPase cycle by preventing hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single stranded DNA that is produced during the removal of the daughter strand. This way, the combination of the ATP binding and hydrolysis and its modulation by DNA enable MutS to adopt different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Flora S Groothuizen ◽  
Ines Winkler ◽  
Michele Cristóvão ◽  
Alexander Fish ◽  
Herrie HK Winterwerp ◽  
...  

To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch.


Sign in / Sign up

Export Citation Format

Share Document