Transient-state Kinetic Analysis of Multi-nucleotide Addition Catalyzed by RNA Polymerase I

Author(s):  
Z.M. Ingram ◽  
D.A. Schneider ◽  
A.L. Lucius
2015 ◽  
Vol 109 (11) ◽  
pp. 2382-2393 ◽  
Author(s):  
Francis D. Appling ◽  
Aaron L. Lucius ◽  
David A. Schneider

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1939
Author(s):  
Andrew M. Clarke ◽  
Abigail K. Huffines ◽  
Yvonne J. K. Edwards ◽  
Chad M. Petit ◽  
David A. Schneider

Saccharomyces cerevisiae has approximately 200 copies of the 35S rDNA gene, arranged tandemly on chromosome XII. This gene is transcribed by RNA polymerase I (Pol I) and the 35S rRNA transcript is processed to produce three of the four rRNAs required for ribosome biogenesis. An intergenic spacer (IGS) separates each copy of the 35S gene and contains the 5S rDNA gene, the origin of DNA replication, and the promoter for the adjacent 35S gene. Pol I is a 14-subunit enzyme responsible for the majority of rRNA synthesis, thereby sustaining normal cellular function and growth. The A12.2 subunit of Pol I plays a crucial role in cleavage, termination, and nucleotide addition during transcription. Deletion of this subunit causes alteration of nucleotide addition kinetics and read-through of transcription termination sites. To interrogate both of these phenomena, we performed native elongating transcript sequencing (NET-seq) with an rpa12Δ strain of S. cerevisiae and evaluated the resultant change in Pol I occupancy across the 35S gene and the IGS. Compared to wild-type (WT), we observed template sequence-specific changes in Pol I occupancy throughout the 35S gene. We also observed rpa12Δ Pol I occupancy downstream of both termination sites and throughout most of the IGS, including the 5S gene. Relative occupancy of rpa12Δ Pol I increased upstream of the promoter-proximal Reb1 binding site and dropped significantly downstream, implicating this site as a third terminator for Pol I transcription. Collectively, these high-resolution results indicate that the A12.2 subunit of Pol I plays an important role in transcription elongation and termination.


Sign in / Sign up

Export Citation Format

Share Document