scholarly journals A self-adaptive trust region method with line search based on a simple subproblem model

2009 ◽  
Vol 232 (2) ◽  
pp. 514-522 ◽  
Author(s):  
Zhaoyang Sang ◽  
Qingying Sun
2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yunlong Lu ◽  
Weiwei Yang ◽  
Wenyu Li ◽  
Xiaowei Jiang ◽  
Yueting Yang

A new trust region method is presented, which combines nonmonotone line search technique, a self-adaptive update rule for the trust region radius, and the weighting technique for the ratio between the actual reduction and the predicted reduction. Under reasonable assumptions, the global convergence of the method is established for unconstrained nonconvex optimization. Numerical results show that the new method is efficient and robust for solving unconstrained optimization problems.


2011 ◽  
Vol 18 (9) ◽  
pp. 1303-1309 ◽  
Author(s):  
Zhaocheng Cui ◽  
Boying Wu

In this paper, we propose a new self-adaptive trust region method for unconstrained optimization problems and develop some convergence properties. In our algorithm, we use the previous and current iterative information to define a suitable trust region radius at each iteration. The global and superlinear convergence properties of the algorithm are established under reasonable assumptions. Preliminary numerical results show that the new method is efficient and attractive for solving unconstrained optimization problems.


2019 ◽  
Vol 53 (3) ◽  
pp. 787-805
Author(s):  
Lijuan Zhao

In this paper, we propose a nonmonotone trust region method for bound constrained optimization problems, where the bounds are dealt with by affine scaling technique. Differing from the traditional trust region methods, the subproblem in our algorithm is based on a conic model. Moreover, when the trial point isn’t acceptable by the usual trust region criterion, a line search technique is used to find an acceptable point. This procedure avoids resolving the trust region subproblem, which may reduce the total computational cost. The global convergence and Q-superlinear convergence of the algorithm are established under some mild conditions. Numerical results on a series of standard test problems are reported to show the effectiveness of the new method.


Sign in / Sign up

Export Citation Format

Share Document