scholarly journals A Nonmonotone Weighting Self-Adaptive Trust Region Algorithm for Unconstrained Nonconvex Optimization

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yunlong Lu ◽  
Weiwei Yang ◽  
Wenyu Li ◽  
Xiaowei Jiang ◽  
Yueting Yang

A new trust region method is presented, which combines nonmonotone line search technique, a self-adaptive update rule for the trust region radius, and the weighting technique for the ratio between the actual reduction and the predicted reduction. Under reasonable assumptions, the global convergence of the method is established for unconstrained nonconvex optimization. Numerical results show that the new method is efficient and robust for solving unconstrained optimization problems.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yunlong Lu ◽  
Wenyu Li ◽  
Mingyuan Cao ◽  
Yueting Yang

A new self-adaptive rule of trust region radius is introduced, which is given by a piecewise function on the ratio between the actual and predicted reductions of the objective function. A self-adaptive trust region method for unconstrained optimization problems is presented. The convergence properties of the method are established under reasonable assumptions. Preliminary numerical results show that the new method is significant and robust for solving unconstrained optimization problems.


2019 ◽  
Vol 53 (3) ◽  
pp. 787-805
Author(s):  
Lijuan Zhao

In this paper, we propose a nonmonotone trust region method for bound constrained optimization problems, where the bounds are dealt with by affine scaling technique. Differing from the traditional trust region methods, the subproblem in our algorithm is based on a conic model. Moreover, when the trial point isn’t acceptable by the usual trust region criterion, a line search technique is used to find an acceptable point. This procedure avoids resolving the trust region subproblem, which may reduce the total computational cost. The global convergence and Q-superlinear convergence of the algorithm are established under some mild conditions. Numerical results on a series of standard test problems are reported to show the effectiveness of the new method.


2011 ◽  
Vol 52-54 ◽  
pp. 920-925
Author(s):  
Qing Hua Zhou ◽  
Yan Geng ◽  
Ya Rui Zhang ◽  
Feng Xia Xu

The derivative free trust region algorithm was considered for solving the unconstrained optimization problems. This paper introduces a novel methodology that modified the center of the trust region in order to improve the search region. The main idea is parameterizing the center of the trust region based on the ideas of multi-directional search and simplex search algorithms. The scope of the new region was so expanded by introducing a parameter as to we can find a better descent directions. Experimental results reveal that the new method is more effective than the classic trust region method on the testing problems.


2019 ◽  
Vol 36 (04) ◽  
pp. 1950017 ◽  
Author(s):  
Wen-Li Dong ◽  
Xing Li ◽  
Zheng Peng

In this paper, we propose a simulated annealing-based Barzilai–Borwein (SABB) gradient method for unconstrained optimization problems. The SABB method accepts the Barzilai–Borwein (BB) step by a simulated annealing rule. If the BB step cannot be accepted, the Armijo line search is used. The global convergence of the SABB method is established under some mild conditions. Numerical experiments indicate that, compared to some existing BB methods using nonmonotone line search technique, the SABB method performs well with high efficiency.


2011 ◽  
Vol 18 (9) ◽  
pp. 1303-1309 ◽  
Author(s):  
Zhaocheng Cui ◽  
Boying Wu

In this paper, we propose a new self-adaptive trust region method for unconstrained optimization problems and develop some convergence properties. In our algorithm, we use the previous and current iterative information to define a suitable trust region radius at each iteration. The global and superlinear convergence properties of the algorithm are established under reasonable assumptions. Preliminary numerical results show that the new method is efficient and attractive for solving unconstrained optimization problems.


2011 ◽  
Vol 28 (05) ◽  
pp. 585-600 ◽  
Author(s):  
KEYVAN AMINI ◽  
MASOUD AHOOKHOSH

In this paper, we present a new trust region method for unconstrained nonlinear programming in which we blend adaptive trust region algorithm by non-monotone strategy to propose a new non-monotone trust region algorithm with automatically adjusted radius. Both non-monotone strategy and adaptive technique can help us introduce a new algorithm that reduces the number of iterations and function evaluations. The new algorithm preserves the global convergence and has local superlinear and quadratic convergence under suitable conditions. Numerical experiments exhibit that the new trust region algorithm is very efficient and robust for unconstrained optimization problems.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 656
Author(s):  
Quan Qu ◽  
Xianfeng Ding ◽  
Xinyi Wang

In this paper, a new nonmonotone adaptive trust region algorithm is proposed for unconstrained optimization by combining a multidimensional filter and the Goldstein-type line search technique. A modified trust region ratio is presented which results in more reasonable consistency between the accurate model and the approximate model. When a trial step is rejected, we use a multidimensional filter to increase the likelihood that the trial step is accepted. If the trial step is still not successful with the filter, a nonmonotone Goldstein-type line search is used in the direction of the rejected trial step. The approximation of the Hessian matrix is updated by the modified Quasi-Newton formula (CBFGS). Under appropriate conditions, the proposed algorithm is globally convergent and superlinearly convergent. The new algorithm shows better performance in terms of the Dolan–Moré performance profile. Numerical results demonstrate the efficiency and robustness of the proposed algorithm for solving unconstrained optimization problems.


2009 ◽  
Vol 2009 ◽  
pp. 1-22 ◽  
Author(s):  
Gonglin Yuan ◽  
Shide Meng ◽  
Zengxin Wei

A trust-region-based BFGS method is proposed for solving symmetric nonlinear equations. In this given algorithm, if the trial step is unsuccessful, the linesearch technique will be used instead of repeatedly solving the subproblem of the normal trust-region method. We establish the global and superlinear convergence of the method under suitable conditions. Numerical results show that the given method is competitive to the normal trust region method.


2011 ◽  
Vol 141 ◽  
pp. 92-97
Author(s):  
Miao Hu ◽  
Tai Yong Wang ◽  
Bo Geng ◽  
Qi Chen Wang ◽  
Dian Peng Li

Nonlinear least square is one of the unconstrained optimization problems. In order to solve the least square trust region sub-problem, a genetic algorithm (GA) of global convergence was applied, and the premature convergence of genetic algorithms was also overcome through optimizing the search range of GA with trust region method (TRM), and the convergence rate of genetic algorithm was increased by the randomness of the genetic search. Finally, an example of banana function was established to verify the GA, and the results show the practicability and precision of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document