scholarly journals New higher order methods for solving nonlinear equations with multiple roots

2011 ◽  
Vol 235 (5) ◽  
pp. 1553-1555 ◽  
Author(s):  
Beong In Yun
Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2570
Author(s):  
Alicia Cordero ◽  
Beny Neta ◽  
Juan R. Torregrosa

In this paper, we propose, to the best of our knowledge, the first iterative scheme with memory for finding roots whose multiplicity is unknown existing in the literature. It improves the efficiency of a similar procedure without memory due to Schröder and can be considered as a seed to generate higher order methods with similar characteristics. Once its order of convergence is studied, its stability is analyzed showing its good properties, and it is compared numerically in terms of their basins of attraction with similar schemes without memory for finding multiple roots.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1038 ◽  
Author(s):  
Sunil Kumar ◽  
Deepak Kumar ◽  
Janak Raj Sharma ◽  
Clemente Cesarano ◽  
Praveen Agarwal ◽  
...  

A plethora of higher order iterative methods, involving derivatives in algorithms, are available in the literature for finding multiple roots. Contrary to this fact, the higher order methods without derivatives in the iteration are difficult to construct, and hence, such methods are almost non-existent. This motivated us to explore a derivative-free iterative scheme with optimal fourth order convergence. The applicability of the new scheme is shown by testing on different functions, which illustrates the excellent convergence. Moreover, the comparison of the performance shows that the new technique is a good competitor to existing optimal fourth order Newton-like techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Rajinder Thukral

We introduce two higher-order iterative methods for finding multiple zeros of nonlinear equations. Per iteration the new methods require three evaluations of function and one of its first derivatives. It is proved that the two methods have a convergence of order five or six.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1809 ◽  
Author(s):  
Ramandeep Behl ◽  
Samaher Khalaf Alharbi ◽  
Fouad Othman Mallawi ◽  
Mehdi Salimi

Finding higher-order optimal derivative-free methods for multiple roots (m≥2) of nonlinear expressions is one of the most fascinating and difficult problems in the area of numerical analysis and Computational mathematics. In this study, we introduce a new fourth order optimal family of Ostrowski’s method without derivatives for multiple roots of nonlinear equations. Initially the convergence analysis is performed for particular values of multiple roots—afterwards it concludes in general form. Moreover, the applicability and comparison demonstrated on three real life problems (e.g., Continuous stirred tank reactor (CSTR), Plank’s radiation and Van der Waals equation of state) and two standard academic examples that contain the clustering of roots and higher-order multiplicity (m=100) problems, with existing methods. Finally, we observe from the computational results that our methods consume the lowest CPU timing as compared to the existing ones. This illustrates the theoretical outcomes to a great extent of this study.


Mathematics ◽  
2016 ◽  
Vol 4 (2) ◽  
pp. 22 ◽  
Author(s):  
Kalyanasundaram Madhu ◽  
Jayakumar Jayaraman

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 546
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Ángel Alberto Magreñán ◽  
Alejandro Moysi

In this manuscript, we introduce the higher-order optimal derivative-free family of Chebyshev–Halley’s iterative technique to solve the nonlinear equation having the multiple roots. The designed scheme makes use of the weight function and one parameter α to achieve the fourth-order of convergence. Initially, the convergence analysis is performed for particular values of multiple roots. Afterward, it concludes in general. Moreover, the effectiveness of the presented methods are certified on some applications of nonlinear equations and compared with the earlier derivative and derivative-free schemes. The obtained results depict better performance than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document