schröder’s method
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2570
Author(s):  
Alicia Cordero ◽  
Beny Neta ◽  
Juan R. Torregrosa

In this paper, we propose, to the best of our knowledge, the first iterative scheme with memory for finding roots whose multiplicity is unknown existing in the literature. It improves the efficiency of a similar procedure without memory due to Schröder and can be considered as a seed to generate higher order methods with similar characteristics. Once its order of convergence is studied, its stability is analyzed showing its good properties, and it is compared numerically in terms of their basins of attraction with similar schemes without memory for finding multiple roots.



2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Víctor Galilea ◽  
José M. Gutiérrez

The purpose of this work is to give a first approach to the dynamical behavior of Schröder’s method, a well-known iterative process for solving nonlinear equations. In this context, we consider equations defined in the complex plane. By using topological conjugations, we characterize the basins of attraction of Schröder’s method applied to polynomials with two roots and different multiplicities. Actually, we show that these basins are half-planes or circles, depending on the multiplicities of the roots. We conclude our study with a graphical gallery that allow us to compare the basins of attraction of Newton’s and Schröder’s method applied to some given polynomials.



Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1076 ◽  
Author(s):  
Ramandeep Behl ◽  
Arwa Jeza Alsolami ◽  
Bruno Antonio Pansera ◽  
Waleed M. Al-Hamdan ◽  
Mehdi Salimi ◽  
...  

Here, we suggest a high-order optimal variant/modification of Schröder’s method for obtaining the multiple zeros of nonlinear uni-variate functions. Based on quadratically convergent Schröder’s method, we derive the new family of fourth -order multi-point methods having optimal convergence order. Additionally, we discuss the theoretical convergence order and the properties of the new scheme. The main finding of the present work is that one can develop several new and some classical existing methods by adjusting one of the parameters. Numerical results are given to illustrate the execution of our multi-point methods. We observed that our schemes are equally competent to other existing methods.



2019 ◽  
Vol 24 (3) ◽  
pp. 422-444 ◽  
Author(s):  
Ramandeep Behl ◽  
Vinay Kanwar ◽  
Young Ik Kim

In this paper, we present many new one-parameter families of classical Rall’s method (modified Newton’s method), Schröder’s method, Halley’s method and super-Halley method for the first time which will converge even though the guess is far away from the desired root or the derivative is small in the vicinity of the root and have the same error equations as those of their original methods respectively, for multiple roots. Further, we also propose an optimal family of iterative methods of fourth-order convergence and converging to a required root in a stable manner without divergence, oscillation or jumping problems. All the methods considered here are found to be more effective than the similar robust methods available in the literature. In their dynamical study, it has been observed that the proposed methods have equal or better stability and robustness as compared to the other methods.





CALCOLO ◽  
2017 ◽  
Vol 54 (4) ◽  
pp. 1199-1212 ◽  
Author(s):  
Veselina K. Kyncheva ◽  
Viktor V. Yotov ◽  
Stoil I. Ivanov




Sign in / Sign up

Export Citation Format

Share Document