scholarly journals Existence of periodic solutions in a linear higher order system of difference equations

2013 ◽  
Vol 66 (11) ◽  
pp. 2239-2250 ◽  
Author(s):  
István Győri ◽  
László Horváth
2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Qi Wang ◽  
Qinqin Zhang ◽  
Qirui Li

Consider the following system of difference equations:xn+1(i)=xn-m+1(i)/Ai∏j=0m-1xn-j(i+j+1)+αi,xn+1(i+m)=xn+1(i),x1-l(i+l)=ai,l,Ai+m=Ai,αi+m=αi,i,l=1,2,…,m;n=0,1,2,…,wheremis a positive integer,Ai,αi,i=1,2,…,m, and the initial conditionsai,l,i,l=1,2,…,m,are positive real numbers. We obtain the expressions of the positive solutions of the system and then give a precise description of the convergence of the positive solutions. Finally, we give some numerical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Guangwang Su ◽  
Taixiang Sun ◽  
Bin Qin

We study in this paper the following max-type system of difference equations of higher order: xn=max{A,yn-k/xn-1} and yn=max{B,xn-k/yn-1}, n∈{0,1,2,…}, where A≥B>0, k≥1, and the initial conditions x-k,y-k,x-k+1,y-k+1,…,x-1,y-1∈(0,+∞). We show that (1) if AB>1, then every solution of the above system is periodic with period 2 eventually. (2) If AB=1>B, then every solution of the above system is periodic with period 2k or 2 eventually. (3) If A=B=1 or AB<1, then the above system has a solution which is not periodic eventually.


Author(s):  
Stevo Stevic ◽  
Mohammed Ali Alghamdi ◽  
Abdullah Alotaibi ◽  
Naseer Shahzad

Sign in / Sign up

Export Citation Format

Share Document