functional difference
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 88)

H-INDEX

41
(FIVE YEARS 4)

Author(s):  
Arash Pezhouman ◽  
Ngoc B. Nguyen ◽  
Alexander J. Sercel ◽  
Thang L. Nguyen ◽  
Ali Daraei ◽  
...  

Background: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be used as a source for cell delivery to remuscularize the heart after myocardial infarction. Despite their therapeutic potential, the emergence of ventricular arrhythmias has limited their application. We previously developed a double reporter hESC line to isolate first heart field (FHF: TBX5+NKX2-5+) and second heart field (SHF: TBX5-NKX2-5+) CMs. Herein, we explore the role of TBX5 and its effects on underlying gene regulatory networks driving phenotypical and functional differences between these two populations.Methods: We used a combination of tools and techniques for rapid and unsupervised profiling of FHF and SHF populations at the transcriptional, translational, and functional level including single cell RNA (scRNA) and bulk RNA sequencing, atomic force and quantitative phase microscopy, respirometry, and electrophysiology.Results: Gene ontology analysis revealed three biological processes attributed to TBX5 expression: sarcomeric structure, oxidative phosphorylation, and calcium ion handling. Interestingly, migratory pathways were enriched in SHF population. SHF-like CMs display less sarcomeric organization compared to FHF-like CMs, despite prolonged in vitro culture. Atomic force and quantitative phase microscopy showed increased cellular stiffness and decreased mass distribution over time in FHF compared to SHF populations, respectively. Electrophysiological studies showed longer plateau in action potentials recorded from FHF-like CMs, consistent with their increased expression of calcium handling genes. Interestingly, both populations showed nearly identical respiratory profiles with the only significant functional difference being higher ATP generation-linked oxygen consumption rate in FHF-like CMs. Our findings suggest that FHF-like CMs display more mature features given their enhanced sarcomeric alignment, calcium handling, and decreased migratory characteristics. Finally, pseudotime analyses revealed a closer association of the FHF population to human fetal CMs along the developmental trajectory.Conclusion: Our studies reveal that distinguishing FHF and SHF populations based on TBX5 expression leads to a significant impact on their downstream functional properties. FHF CMs display more mature characteristics such as enhanced sarcomeric organization and improved calcium handling, with closer positioning along the differentiation trajectory to human fetal hearts. These data suggest that the FHF CMs may be a more suitable candidate for cardiac regeneration.


2021 ◽  
Author(s):  
◽  
Luke Stevenson

<p>Antibiotic discovery rates dramatically declined following the “golden age” of the 1940’s to the 1960’s. The platforms that underpinned that age of discovery rested upon laboratory cultivation of a small clade of bacteria, the actinomycetes, primarily isolated from soil environments. Fermentation extracts of these isolated bacteria have provided the majority of antibiotics and anticancer small molecules still used today. By applying modern genetic analysis techniques to these same environmental sources that have previously yielded such success, we can uncover new biosynthetic pathways, and bioactive compounds. The work described in this thesis investigated New Zealand soil metagenomes for this purpose.  Four large metagenome libraries were constructed from the microbiomes of diverse soil environments. These were then interrogated by a functional screening approach in a knockout Escherichia coli strain, to recover a large collection of the biosynthetic gene clusters responsible for bacterial secondary metabolite production. Using different modes of bioinformatic analysis, these gene clusters were demonstrated to have both phylogenetic divergence, and functional difference from bacterial biosynthesis pathways previously discovered from culture based studies.  Two additional biosynthetic pathways were recovered from one of these metagenome libraries, and in each case found to have novel genetic features. These gene clusters were further studied by heterologous expression within Streptomyces albus production hosts. One of these gene clusters produced small aromatic polyketide compounds, the structure of one of which was solved by chemical analytic techniques, and found to be a new chemical entity.  The second gene cluster was demonstrated to have similarity to known aureolic acid biosynthesis gene clusters – a class of potent anticancer natural products. Heterologous expression resulted in the production of many metabolites, two of which were characterised and found to be new members of this chemical class.  The research in this thesis both validates the use of metagenomic analysis for future natural product discovery efforts, and adds to a growing body of evidence that understudied clades of bacteria have an untapped biosynthetic potential that can be accessed by metagenomic methods.</p>


2021 ◽  
Author(s):  
◽  
Luke Stevenson

<p>Antibiotic discovery rates dramatically declined following the “golden age” of the 1940’s to the 1960’s. The platforms that underpinned that age of discovery rested upon laboratory cultivation of a small clade of bacteria, the actinomycetes, primarily isolated from soil environments. Fermentation extracts of these isolated bacteria have provided the majority of antibiotics and anticancer small molecules still used today. By applying modern genetic analysis techniques to these same environmental sources that have previously yielded such success, we can uncover new biosynthetic pathways, and bioactive compounds. The work described in this thesis investigated New Zealand soil metagenomes for this purpose.  Four large metagenome libraries were constructed from the microbiomes of diverse soil environments. These were then interrogated by a functional screening approach in a knockout Escherichia coli strain, to recover a large collection of the biosynthetic gene clusters responsible for bacterial secondary metabolite production. Using different modes of bioinformatic analysis, these gene clusters were demonstrated to have both phylogenetic divergence, and functional difference from bacterial biosynthesis pathways previously discovered from culture based studies.  Two additional biosynthetic pathways were recovered from one of these metagenome libraries, and in each case found to have novel genetic features. These gene clusters were further studied by heterologous expression within Streptomyces albus production hosts. One of these gene clusters produced small aromatic polyketide compounds, the structure of one of which was solved by chemical analytic techniques, and found to be a new chemical entity.  The second gene cluster was demonstrated to have similarity to known aureolic acid biosynthesis gene clusters – a class of potent anticancer natural products. Heterologous expression resulted in the production of many metabolites, two of which were characterised and found to be new members of this chemical class.  The research in this thesis both validates the use of metagenomic analysis for future natural product discovery efforts, and adds to a growing body of evidence that understudied clades of bacteria have an untapped biosynthetic potential that can be accessed by metagenomic methods.</p>


Author(s):  
Ari Laptev ◽  
◽  
Lukas Schimmer ◽  

We prove sharp Lieb-Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated to mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanghui Sheng ◽  
Lujing Chen ◽  
Xiaozhi Ren ◽  
Zheng Jiang ◽  
King-Wai Yau

AbstractIntrinsically-photosensitive retinal ganglion cells (ipRGCs) are non-rod/non-cone retinal photoreceptors expressing the visual pigment, melanopsin, to detect ambient irradiance for various non-image-forming visual functions. The M1-subtype, amongst the best studied, mediates primarily circadian photoentrainment and pupillary light reflex. Their intrinsic light responses are more prolonged than those of rods and cones even at the single-photon level, in accordance with the typically slower time course of non-image-forming vision. The short (OPN4S) and long (OPN4L) alternatively-spliced forms of melanopsin proteins are both present in M1-ipRGCs, but their functional difference is unclear. We have examined this point by genetically removing the Opn4 gene (Opn4−/−) in mouse and re-expressing either OPN4S or OPN4L singly in Opn4−/− mice by using adeno-associated virus, but found no obvious difference in their intrinsic dim-flash responses. Previous studies have indicated that two dominant slow steps in M1-ipRGC phototransduction dictate these cells’ intrinsic dim-flash-response kinetics, with time constants (τ1 and τ2) at room temperature of ~ 2 s and ~ 20 s, respectively. Here we found that melanopsin inactivation by phosphorylation or by β-arrestins may not be one of these two steps, because their genetic disruptions did not prolong the two time constants or affect the response waveform. Disruption of GAP (GTPase-Activating-Protein) activity on the effector enzyme, PLCβ4, in M1-ipRGC phototransduction to slow down G-protein deactivation also did not prolong the response decay, but caused its rising phase to become slightly sigmoidal by giving rise to a third time constant, τ3, of ~ 2 s (room temperature). This last observation suggests that GAP-mediated G-protein deactivation does partake in the flash-response termination, although normally with a time constant too short to be visible in the response waveform.


2021 ◽  
Author(s):  
Sophia Wienbar ◽  
Gregory Schwartz

The output of spiking neurons depends both on their synaptic inputs and on their intrinsic properties. Retinal ganglion cells (RGCs), the spiking projection neurons of the retina, comprise over 40 different types in mice and other mammals, each tuned to different features of visual scenes. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been substantially less research aimed at understanding how the intrinsic properties of RGCs differ and how those differences impact feature selectivity. Here, we introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, whose contrast selectivity is shaped by its intrinsic properties. Surprisingly, when we compare the bSbC RGC to the OFF sustained alpha (OFFsA) RGC that receives similar synaptic input, we find that the two RGC types exhibit starkly different responses to an identical stimulus. We identified spike generation as the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block in conditions where the OFFsA RGC maintains a high spike rate. Pharmacological experiments, imaging, and compartment modeling demonstrate that these differences in spike generation are the result of differences in voltage-gated sodium channel conductances. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.


2021 ◽  
Author(s):  
Jiaqi Liu ◽  
Weicheng Li ◽  
Caiqing Yao ◽  
Jie Yu ◽  
Heping Zhang

Abstract Background: Bifidobacterium catenulatum, which includes two subspecies that B. catenulatum subsp. kashiwanohense and B. catenulatum subsp. catenulatum are usually from infant and adult gut respectively, while the genomic studies of functional difference and genetic divergence in them have been rarely reported. In this study, we analyzed 16 B. catenulatum strains through comparative genomics, including two novel sequenced strains. Results: A phylogenetic tree based on 785 core genes indicated that the two subspecies of B. catenulatum were significantly separated and confirmed their colonizing bias in infants and adults. Comparison of general genomic characteristics revealed that the two subspecies had significantly different genomic sizes but similar GC content. Functional annotations found that they peculiarly differ in utilization of carbohydrates and amino acid. Among them, we found that carbohydrate metabolism seems to play an important role in the divergence because of their carbohydrate-active enzymes (CAZyme) present two different clustering patterns. B. catenulatum subsp. kashiwanohense have functional genes that specifically adapted to the infant gut for glycoside hydrolases 95 (GH95) and carbohydrate-binding modules 51 (CBM51), which specifically participated in the metabolism of Human Milk Oligosaccharides (HMOs), and specific genes fuc that related to HMOs were also detected. While B. catenulatum subsp. catenulatum rich in GH3 and glycosyltransferases 4 (GT4) tended to metabolize plant-derived glycan that may help it metabolize more complex carbohydrates (eg. xylan) in the adult intestine. Conclusions: Our findings revealed genomic evidence of carbohydrate utilization bias which may be a key leading to the genetic divergence of two subspecies of B. catenulatum.


2021 ◽  
Vol 22 (19) ◽  
pp. 10793
Author(s):  
Bu-Yeo Kim ◽  
Seo-Young Lee ◽  
Sun-Ku Chung

p53 is a transcription factor that is activated under DNA damage stress and regulates the expression of proapoptotic genes including the expression of growth arrest genes to subsequently determine the fate of cells. To investigate the functional differences of polymorphic p53 codon 72, we constructed isogenic lines encoding each polymorphic p53 codon 72 based on induced pluripotent stem cells, which can endogenously express each polymorphic p53 protein only, encoding either the arginine 72 (R72) variant or proline 72 (P72) variant, respectively. We found that there was no significant functional difference between P72 and R72 cells in growth arrest or apoptosis as a representative function of p53. In the comprehensive analysis, the expression pattern of the common p53 target genes, including cell cycle arrest or apoptosis, was also increased regardless of the polymorphic p53 codon 72 status, whereas the expression pattern involved in metabolism was decreased and more significant in R72 than in P72 cells. This study noted that polymorphic p53 codon 72 differentially regulated the functional categories of metabolism and not the pathways that determine cell fate, such as growth arrest and apoptosis in cells exposed to genotoxic stress.


Author(s):  
Andrea Kelemen ◽  
Idan Carmi ◽  
Ádám Oszvald ◽  
Péter Lőrincz ◽  
Gábor Petővári ◽  
...  

AbstractThe majority of colorectal cancer (CRC) patients carry mutations in the APC gene, which lead to the unregulated activation of the Wnt pathway. Extracellular vesicles (EV) are considered potential therapeutic tools. Although CRC is a genetically heterogeneous disease, the significance of the intra-tumor heterogeneity in EV uptake of CRC cells is not yet known. By using mouse and patient-derived organoids, the currently available best model of capturing cellular heterogeneity, we found that Apc mutation induced the expression of interferon-induced transmembrane protein 1 (Ifitm1), a membrane protein that plays a major role in cellular antiviral responses. Importantly, organoids derived from IFITM1high CRC cells contained more proliferating cells and they had a markedly reduced uptake of fibroblast EVs as compared to IFITM1low/− cells. In contrast, there was no difference in the intensity of EV release between CRC subpopulations with high and low IFITM1 levels. Importantly, the difference in cell proliferation between these two subpopulations disappeared in the presence of fibroblast-derived EVs, proving the functional relevance of the enhanced EV uptake by IFITM1low CRC cells. Furthermore, inactivating IFITM1 resulted in an enhanced EV uptake, highlighting the importance of this molecule in establishing the cellular difference for EV effects. Collectively, we identified CRC cells with functional difference in their EV uptake ability that must be taken into consideration when using EVs as therapeutic tools for targeting cancer cells.


2021 ◽  
Vol 233 ◽  
pp. 106843
Author(s):  
Rangga Setiawan ◽  
Chathura Priyadarshana ◽  
Hitoshi Miyazaki ◽  
Atsushi Tajima ◽  
Atsushi Asano

Sign in / Sign up

Export Citation Format

Share Document