Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes

CATENA ◽  
2021 ◽  
Vol 196 ◽  
pp. 104903
Author(s):  
Mara Regina Moitinho ◽  
Antonio Sergio Ferraudo ◽  
Alan Rodrigo Panosso ◽  
Elton da Silva Bicalho ◽  
Daniel De Bortoli Teixeira ◽  
...  
2013 ◽  
Vol 70 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Daniel De Bortoli Teixeira ◽  
Elton da Silva Bicalho ◽  
Alan Rodrigo Panosso ◽  
Carlos Eduardo Pellegrino Cerri ◽  
Gener Tadeu Pereira ◽  
...  

2015 ◽  
Vol 152 ◽  
pp. 39-51 ◽  
Author(s):  
Roberto Mancinelli ◽  
Sara Marinari ◽  
Paola Brunetti ◽  
Emanuele Radicetti ◽  
Enio Campiglia

2019 ◽  
Vol 209 ◽  
pp. 125-135 ◽  
Author(s):  
Soumendra N. Bhanja ◽  
Junye Wang ◽  
Narayan K. Shrestha ◽  
Xiaokun Zhang

2020 ◽  
Vol 12 (13) ◽  
pp. 5271
Author(s):  
Dejie Kong ◽  
Nana Liu ◽  
Chengjie Ren ◽  
Huiying Li ◽  
Weiyu Wang ◽  
...  

Developing environmentally friendly and sustainable nitrogen (N) fertilizer management strategies is crucial in mitigating carbon dioxide (CO2) emission from soil. How N fertilizer management practices influence soil CO2 emission rates under different crop rotations remains unclear. The aim of this study was to assess the impact on soil CO2 emission and soil physicochemical properties of three N fertilizer treatments including traditional rate (TF), optimized rate (0.8TF), and no fertilizer (NF) under three different crop rotation treatments: wheat-fallow (WF), wheat-soybean (WS), and wheat-maize (WM) over two years in a field experiment in northwest China. The rates were 5.51, 5.60, and 5.97 μmol·m−2·s−1 of mean soil CO2 emission under the TF, 0.8TF, and NF treatments, respectively. Mean soil CO2 emission rates were 21.33 and 26.99% higher under the WM rotation compared with the WF and WS rotations, respectively. The WS rotation showed higher soil nutrient content and lower soil CO2 emissions, and reduced fertilizer application. Importantly, soil organic carbon (SOC) concentration in the topsoil can be maximized by including either a summer legume or a summer maize crop in winter wheat rotations, and by applying N fertilizer at the optimal rate. This may be particularly beneficial in the dryland cropping systems of northern China.


2017 ◽  
Vol 44 (2) ◽  
pp. 218-223 ◽  
Author(s):  
A. G. Molchanov ◽  
Yu. A. Kurbatova ◽  
A. V. Olchev

2014 ◽  
Vol 6 (4) ◽  
pp. 468-477 ◽  
Author(s):  
QianBing Zhang ◽  
Ling Yang ◽  
ZhenZhu Xu ◽  
YaLi Zhang ◽  
HongHai Luo ◽  
...  

1998 ◽  
Vol 28 (4) ◽  
pp. 534-539 ◽  
Author(s):  
Robert G Striegl ◽  
Kimberly P Wickland

Quantification of the components of ecosystem respiration is essential to understanding carbon (C) cycling of natural and disturbed landscapes. Soil respiration, which includes autotrophic and heterotrophic respiration from throughout the soil profile, is the second largest flux in the global carbon cycle. We measured soil respiration (soil CO2 emission) at an undisturbed mature jack pine (Pinus banksiana Lamb.) stand in Saskatchewan (old jack pine, OJP), and at a formerly continuous portion of the stand that was clear-cut during the previous winter (clear-cut, CC). Tree harvesting reduced soil CO2 emission from ~22.5 to ~9.1 mol CO2 cdot m-2 for the 1994 growing season. OJP was a small net sink of atmospheric CO2, while CC was a net source of CO2. Winter emissions were similar at both sites. Reduction of soil respiration was attributed to disruption of the soil surface and to the death of tree roots. Flux simulations for CC and OJP identify 40% of CO2 emission at the undisturbed OJP site as near-surface respiration, 25% as deep-soil respiration, and 35% as tree-root respiration. The near-surface component was larger than the estimated annual C input to soil, suggesting fast C turnover and no net C accumulation in these boreal uplands in 1994.


Sign in / Sign up

Export Citation Format

Share Document