Motor program selection and response properties of giant interneurons in the cricket Gryllus bimaculatus

Author(s):  
Tetsuya Matsuura
2007 ◽  
Vol 58 ◽  
pp. S91
Author(s):  
Tetsuya Matsuura ◽  
Masamichi Kanou ◽  
Shinsuke Morita ◽  
Tsuneo Yamaguchi

2001 ◽  
Vol 11 (6) ◽  
pp. 673-677 ◽  
Author(s):  
Irving Kupfermann ◽  
Klaudiusz R Weiss

2021 ◽  
pp. 141-146
Author(s):  
Farwa Ali ◽  
Eduardo E. Benarroch

The basal ganglia are a group of nuclei that are involved in motor, cognitive, and behavioral circuits and are especially important in motor program selection and motor learning. The key components of the basal ganglia and their circuitry include the striatum (putamen, caudate nucleus, and nucleus accumbens), globus pallidus (GP), subthalamic nucleus (STN), substantia nigra, pedunculopontine nucleus (PPN), and parts of the thalamus and cortex. The basal ganglia have parallel motor, oculomotor, associative, and limbic circuits. This chapter reviews the anatomy and circuitry of the basal ganglia.


1998 ◽  
Vol 201 (17) ◽  
pp. 2529-2541 ◽  
Author(s):  
P Kloppenburg ◽  
M Hörner

The electrophysiological properties of cultured giant interneurons isolated from the terminal ganglion of adult crickets (Gryllus bimaculatus) were investigated using whole-cell patch-clamp techniques. To allow for unequivocal identification of these interneurons in cell culture, a protocol for fast and selective labeling of their cell bodies was established. Prior to cell dissociation, the giant interneurons were backfilled through their axons in situ with a fluorescent dye (dextran tetramethylrhodamine). In primary cell cultures, the cell bodies of giant interneurons were identified among a population of co-cultured neurons by their red fluorescence. Action potentials were recorded from the cell bodies of the cultured interneurons suggesting that several types of voltage-activated ion channels exist in these cells. Using voltage-clamp recording techniques, four voltage-activated currents were isolated and characterized. The giant interneurons express at least two distinct K+ currents: a transient current that is blocked by 4-aminopyridine (4x10(-3 )mol l-1) and a sustained current that is partially blocked by tetraethylammonium (3x10(-2 )mol l-1) and quinidine (2x10(-4 )mol l-1). In addition, a transient Na+ current sensitive to 10(-7 )mol l-1 tetrodotoxin and a Ca2+ current blocked by 5x10(-4 )mol l-1 CdCl2 have been characterized. This study represents the first step in an attempt to analyze the cellular and ionic mechanisms underlying plasticity in the well-characterized and behaviorally important giant interneuron pathway in insects.


Sign in / Sign up

Export Citation Format

Share Document