electrophysiological properties
Recently Published Documents


TOTAL DOCUMENTS

1633
(FIVE YEARS 263)

H-INDEX

88
(FIVE YEARS 6)

Author(s):  
Jannis Körner ◽  
Angelika Lampert

AbstractSensory neurons are responsible for the generation and transmission of nociceptive signals from the periphery to the central nervous system. They encompass a broadly heterogeneous population of highly specialized neurons. The understanding of the molecular choreography of individual subpopulations is essential to understand physiological and pathological pain states. Recently, it became evident that species differences limit transferability of research findings between human and rodents in pain research. Thus, it is necessary to systematically compare and categorize the electrophysiological data gained from human and rodent dorsal root ganglia neurons (DRGs). In this systematic review, we condense the available electrophysiological data defining subidentities in human and rat DRGs. A systematic search on PUBMED yielded 30 studies on rat and 3 studies on human sensory neurons. Defined outcome parameters included current clamp, voltage clamp, cell morphology, pharmacological readouts, and immune reactivity parameters. We compare evidence gathered for outcome markers to define subgroups, offer electrophysiological parameters for the definition of neuronal subtypes, and give a framework for the transferability of electrophysiological findings between species. A semiquantitative analysis revealed that for rat DRGs, there is an overarching consensus between studies that C-fiber linked sensory neurons display a lower action potential threshold, higher input resistance, a larger action potential overshoot, and a longer afterhyperpolarization duration compared to other sensory neurons. They are also more likely to display an infliction point in the falling phase of the action potential. This systematic review points out the need of more electrophysiological studies on human sensory neurons.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Sebastian Curti ◽  
Federico Davoine ◽  
Antonella Dapino

Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals, they are mostly composed of the protein connexin36. Circuits of electrically coupled neurons are widespread in these animals. Plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations such as lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on the gap junction resistance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage and ligand gated channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here, we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.


PLoS Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. e3001509
Author(s):  
Qiaohan Yang ◽  
Guangyu Zhou ◽  
Torben Noto ◽  
Jessica W. Templer ◽  
Stephan U. Schuele ◽  
...  

Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ana Belén Iglesias González ◽  
Jon E. T. Jakobsson ◽  
Jennifer Vieillard ◽  
Malin C. Lagerström ◽  
Klas Kullander ◽  
...  

The spinal locomotor network is frequently used for studies into how neuronal circuits are formed and how cellular activity shape behavioral patterns. A population of dI6 interneurons, marked by the Doublesex and mab-3 related transcription factor 3 (Dmrt3), has been shown to participate in the coordination of locomotion and gaits in horses, mice and zebrafish. Analyses of Dmrt3 neurons based on morphology, functionality and the expression of transcription factors have identified different subtypes. Here we analyzed the transcriptomes of individual cells belonging to the Dmrt3 lineage from zebrafish and mice to unravel the molecular code that underlies their subfunctionalization. Indeed, clustering of Dmrt3 neurons based on their gene expression verified known subtypes and revealed novel populations expressing unique markers. Differences in birth order, differential expression of axon guidance genes, neurotransmitters, and their receptors, as well as genes affecting electrophysiological properties, were identified as factors likely underlying diversity. In addition, the comparison between fish and mice populations offers insights into the evolutionary driven subspecialization concomitant with the emergence of limbed locomotion.


Author(s):  
Sebastian Curti ◽  
Federico Davoine ◽  
Antonella Dapino

Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals are mostly composed of the protein connexin (Cx)36. Circuits of electrically coupled neurons are widespread in these animals, plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations like lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on gap junction conductance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage dependent channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.


2021 ◽  
Author(s):  
Anup Das ◽  
John Myers ◽  
Raissa Mathura ◽  
Ben Shofty ◽  
Brian A Metzger ◽  
...  

The insula plays a fundamental role in a wide range of adaptive human behaviors, but its electrophysiological dynamics are poorly understood. Here we used human intracranial electroencephalographic recordings to investigate the electrophysiological properties and hierarchical organization of spontaneous neuronal oscillations within the insula. We analyzed the neuronal oscillations of the insula directly and found that rhythms in the theta and beta frequency oscillations are widespread and spontaneously present. These oscillations are largely organized along the anterior-posterior axis of the insula. Both the left and right insula showed anterior-to-posterior decreasing gradients for the power of oscillations in the beta frequency band. The left insula also showed a posterior-to-anterior decreasing frequency gradient and an anterior-to-posterior decreasing power gradient in the theta frequency band. In addition to measuring the power of these oscillations, we also examined the phase of these signals across simultaneous recording channels and found that the insula oscillations in the theta and beta bands are traveling waves. The strength of the traveling waves in each frequency was positively correlated with the amplitude of each oscillation. However, the theta and beta traveling waves were uncoupled to each other in terms of phase and amplitude, which suggested that insula traveling waves in the theta and beta bands operate independently. Our findings provide new insights into the spatiotemporal dynamics and hierarchical organization of neuronal oscillations within the insula, which, given its rich connectivity with widespread cortical regions, indicates that oscillations and traveling waves have an important role in intra- and inter-insula communication.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xin-Yi Chen ◽  
Lei Chen ◽  
Wu Yang ◽  
An-Mu Xie

The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and reduces body weight. The electrophysiological properties of neurons in the mammalian central nervous system reflect the neuronal excitability and the functional organization of the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding behaviors and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses food intake and induces postsynaptic depolarization of membrane potential and/or presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and telencephalon. This review may provide a background to guide future research about the cellular mechanisms of GLP-1-induced feeding inhibition.


2021 ◽  
Author(s):  
Halen Baker Erdman ◽  
Evgeniya Kornilov ◽  
Eilat Kahana ◽  
Omer Zarchi ◽  
Johnathan Reiner ◽  
...  

Deep brain stimulation (DBS) is commonly and safely performed for selective Parkinson's disease patients. Many centers perform DBS lead positioning exclusively under local anesthesia, to allow for brain microelectrode recordings (MER) and testing of stimulation-related therapeutic and side effects. These measures enable physiological identification of the DBS targets based on electrophysiological properties like firing rates and patterns, optimization of lead placement accuracy, and intra-operative evaluation of therapeutic window. Nevertheless, due to the challenges of awake surgery, some centers use sedation or general anesthesia, despite the distortion of discharge properties, and potential impact on clinical outcomes. Thus, there is a need for a novel anesthesia regimen that enables sedation without compromising intra-operative monitoring. This study investigates the use of low-dose ketamine for conscious sedation during lead positioning in subthalamic nucleus (STN) DBS for Parkinson's disease patients. Three anesthetic regimens were retrospectively compared in 38 surgeries across three DBS centers: 1) Interleaved propofol-ketamine (PK), 2) Interleaved propofol-awake (PA), and 3) Fully awake (AA). All anesthesia regimens achieved satisfactory MER. Automatic detection of STN borders and subdomains using a Hidden Markov Model was similar between the groups. Patients' symptoms and cooperation during stimulation testing in the ketamine group was not altered. No major adverse effects were reported in the different anesthesia protocols. These results support the use of low-dose ketamine as a novel alternative for the existing DBS anesthesia regimens, optimizing patient's experience while preserving lead placement accuracy. A prospective study should be performed to confirm these findings.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shicheng He ◽  
Kun Kou ◽  
Christopher O’Shea ◽  
Tangting Chen ◽  
Razik Mu-u-min ◽  
...  

AbstractPathological hypertrophy underlies sudden cardiac death due to its high incidence of occurrence of ventricular arrhythmias. The alteration of transmural electrophysiological properties in hypertrophic cardiac murine tissue has never been explored previously. In this dataset, we have for the first time conducted high-throughput simultaneous optical imaging of transmembrane potential and calcium transients (CaT) throughout the entire hypertrophic murine hearts at high temporal and spatial resolution. Using ElectroMap, we have conducted multiple parameters analysis including action potential duration/calcium transient duration, conduction velocity, alternans and diastolic interval. Voltage-calcium latency was measured as time difference between action potential and CaT peak. The dataset therefore provides the first high spatial resolution transmural electrophysiological profiling of the murine heart, allowing interrogation of mechanisms driving ventricular arrhythmias associated with pathological hypertrophy. The dataset allows for further reuse and detailed analyses of geometrical, topological and functional analyses and reconstruction of 2-dimensional and 3-dimentional models.


Sign in / Sign up

Export Citation Format

Share Document