scholarly journals Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

Cell Reports ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. 810-820 ◽  
Author(s):  
Faye M. Drawnel ◽  
Stefano Boccardo ◽  
Michael Prummer ◽  
Frédéric Delobel ◽  
Alexandra Graff ◽  
...  
2021 ◽  
Vol 44 (1 suppl 1) ◽  
Author(s):  
Patricia Nolasco ◽  
Juliana Borsoi ◽  
Carolina Borsoi Moraes ◽  
Lucio H. Freitas-Junior ◽  
Lygia Veiga Pereira

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ratchapong Netsrithong ◽  
Siriwal Suwanpitak ◽  
Bootsakorn Boonkaew ◽  
Kongtana Trakarnsanga ◽  
Lung-Ji Chang ◽  
...  

Abstract Background Human induced pluripotent stem cells (hiPSCs) offer a renewable source of cells for the generation of hematopoietic cells for cell-based therapy, disease modeling, and drug screening. However, current serum/feeder-free differentiation protocols rely on the use of various cytokines, which makes the process very costly or the generation of embryoid bodies (EBs), which are labor-intensive and can cause heterogeneity during differentiation. Here, we report a simple feeder and serum-free monolayer protocol for efficient generation of iPSC-derived multipotent hematoendothelial progenitors (HEPs), which can further differentiate into endothelial and hematopoietic cells including erythroid and T lineages. Methods Formation of HEPs from iPSCs was initiated by inhibition of GSK3 signaling for 2 days followed by the addition of VEGF and FGF2 for 3 days. The HEPs were further induced toward mature endothelial cells (ECs) in an angiogenic condition and toward T cells by co-culturing with OP9-DL1 feeder cells. Endothelial-to-hematopoietic transition (EHT) of the HEPs was further promoted by supplementation with the TGF-β signaling inhibitor. Erythroid differentiation was performed by culturing the hematopoietic stem/progenitor cells (HSPCs) in a three-stage erythroid liquid culture system. Results Our protocol significantly enhanced the number of KDR+ CD34+ CD31+ HEPs on day 5 of differentiation. Further culture of HEPs in angiogenic conditions promoted the formation of mature ECs, which expressed CD34, CD31, CD144, vWF, and ICAM-1, and could exhibit the formation of vascular-like network and acetylated low-density lipoprotein (Ac-LDL) uptake. In addition, the HEPs were differentiated into CD8+ T lymphocytes, which could be expanded up to 34-fold upon TCR stimulation. Inhibition of TGF-β signaling at the HEP stage promoted EHT and yielded a large number of HSPCs expressing CD34 and CD43. Upon erythroid differentiation, these HSPCs were expanded up to 40-fold and displayed morphological changes following stages of erythroid development. Conclusion This protocol offers an efficient and simple approach for the generation of multipotent HEPs and could be adapted to generate desired blood cells in large numbers for applications in basic research including developmental study, disease modeling, and drug screening as well as in regenerative medicine.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3250
Author(s):  
Ponthip Pratumkaew ◽  
Surapol Issaragrisil ◽  
Sudjit Luanpitpong

The breakthrough in human induced pluripotent stem cells (hiPSCs) has revolutionized the field of biomedical and pharmaceutical research and opened up vast opportunities for drug discovery and regenerative medicine, especially when combined with gene-editing technology. Numerous healthy and patient-derived hiPSCs for human disease modeling have been established, enabling mechanistic studies of pathogenesis, platforms for preclinical drug screening, and the development of novel therapeutic targets/approaches. Additionally, hiPSCs hold great promise for cell-based therapy, serving as an attractive cell source for generating stem/progenitor cells or functional differentiated cells for degenerative diseases, due to their unlimited proliferative capacity, pluripotency, and ethical acceptability. In this review, we provide an overview of hiPSCs and their utility in the study of hematologic disorders through hematopoietic differentiation. We highlight recent hereditary and acquired genetic hematologic disease modeling with patient-specific iPSCs, and discuss their applications as instrumental drug screening tools. The clinical applications of hiPSCs in cell-based therapy, including the next-generation cancer immunotherapy, are provided. Lastly, we discuss the current challenges that need to be addressed to fulfill the validity of hiPSC-based disease modeling and future perspectives of hiPSCs in the field of hematology.


HemaSphere ◽  
2021 ◽  
Vol 5 (7) ◽  
pp. e593
Author(s):  
Lise Secardin ◽  
Cintia Gomez Limia ◽  
Suzana da Silva-Benedito ◽  
Larissa Lordier ◽  
Mira El-Khoury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document