neurological diseases
Recently Published Documents


TOTAL DOCUMENTS

4682
(FIVE YEARS 2635)

H-INDEX

98
(FIVE YEARS 40)

Author(s):  
Ismail Tahmaz ◽  
Somayeh Shahmoradi Ghahe ◽  
Ulrike Topf

Cellular functions are largely performed by proteins. Defects in the production, folding, or removal of proteins from the cell lead to perturbations in cellular functions that can result in pathological conditions for the organism. In cells, molecular chaperones are part of a network of surveillance mechanisms that maintains a functional proteome. Chaperones are involved in the folding of newly synthesized polypeptides and assist in refolding misfolded proteins and guiding proteins for degradation. The present review focuses on the molecular co-chaperone prefoldin. Its canonical function in eukaryotes involves the transfer of newly synthesized polypeptides of cytoskeletal proteins to the tailless complex polypeptide 1 ring complex (TRiC/CCT) chaperonin which assists folding of the polypeptide chain in an energy-dependent manner. The canonical function of prefoldin is well established, but recent research suggests its broader function in the maintenance of protein homeostasis under physiological and pathological conditions. Interestingly, non-canonical functions were identified for the prefoldin complex and also for its individual subunits. We discuss the latest findings on the prefoldin complex and its subunits in the regulation of transcription and proteasome-dependent protein degradation and its role in neurological diseases, cancer, viral infections and rare anomalies.


Author(s):  
Nevine El Nahas ◽  
Fatma Fathalla Kenawy ◽  
Eman Hamid Abd Eldayem ◽  
Tamer M. Roushdy ◽  
Shahinaz M. Helmy ◽  
...  

Abstract Background Spasticity is a common complication of many neurological diseases and despite contributing much disability; the available therapeutic options are limited. Peripheral magnetic stimulation is one promising option. In this study, we investigated whether peripheral intermittent theta burst stimulation (piTBS) will reduce spasticity when applied directly on spastic muscles. Methods In this sham-controlled study, eight successive sessions of piTBS were applied directly to spastic muscles with supra threshold intensity. Assessment was done by modified Ashworth scale (mAS) and estimated Botulinum toxin dose (eBTD) at baseline and after the 8th session in both active and sham groups. Results A total of 120 spastic muscles of 36 patients were included in the analysis. Significant reduction of mAS and eBTD was found in the active compared to sham group (p < 0.001). The difference in mAS was also significant when tested in upper limb and lower limb subgroups. The degree of reduction in mAS was positively correlated with the baseline scores in the active group. Conclusion piTBS could be a promising method to reduce spasticity and eBTD. It consumes less time than standard high frequency protocols without compromising treatment efficacy. Trial registration: Clinical trial registry number: PACTR202009622405087. Retrospectively Registered 14th September, 2020.


Author(s):  
Nan Zhang ◽  
Chunhong Ding ◽  
Yuxin Zuo ◽  
Yu Peng ◽  
Lielian Zuo

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Laura R. Rodríguez ◽  
Tamara Lapeña-Luzón ◽  
Noelia Benetó ◽  
Vicent Beltran-Beltran ◽  
Federico V. Pallardó ◽  
...  

Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum–mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich’s ataxia, and Charcot–Marie–Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.


2022 ◽  
Vol 15 ◽  
Author(s):  
Samridhi Sharma ◽  
Yuyi You

2022 ◽  
Vol 16 (1) ◽  
pp. e0010109
Author(s):  
Ana Hernández-González ◽  
Belén González-Bertolín ◽  
Laura Urrea ◽  
Agnes Fleury ◽  
Elizabeth Ferrer ◽  
...  

Background Neurocysticercosis (NCC), and cystic echinococcosis (CE) are two neglected diseases caused by cestodes, co-endemic in many areas of the world. Imaging studies and serological tests are used in the diagnosis of both parasitic diseases, but cross-reactions may confound the results of the latter. The novel multiplex bead-based assay with recombinant antigens has been reported to increases the diagnostic accuracy of serological techniques. Methodology We set-up an immunoassay based on the multiplex bead-based platform (MBA), using the rT24H (against Cysticercus cellulosae, causing cysticercosis) and r2B2t (against Echinococcus granulosus sensu lato, causing CE) recombinant antigens, for simultaneous and differential diagnosis of these infections. The antigens were tested on 356 sera from 151 patients with CE, 126 patients with NCC, and 79 individuals negative for both diseases. Specificity was calculated including sera from healthy donors, other neurological diseases and the respective NCC or CE sera counterpart. The diagnostic accuracy of this assay was compared with two commercial ELISA tests, Novalisa and Ridascreen, widely used in the routine diagnosis of cysticercosis and CE, respectively. Main findings For the diagnosis of NCC, sensitivity ranged from 57.94–63.49% for the rT24H-MBA, and 40.48–46.03% for Novalisa ELISA depending on exclusion or inclusion of sera having equivocal results on ELISA from the analysis; specificities ranged from 90.87–91.30% and 70.43–76.96%, respectively. AUC values of the ROC curve were 0.783 (rT24H) and 0.619 (Novalisa) (p-value < 0.001). For the diagnosis of CE, the sensitivity of the r2B2t-MBA ranged from 68.87–69.77% and of Ridascreen ELISA from 50.00–57.62%; specificities from 92.47–92.68% and from 74.15–80.98%, respectively. AUC values were 0.717 and 0.760, respectively. Conclusions/Significance Overall, the recombinant antigens tested with the bead-based technology showed better diagnostic accuracy than the commercial assays, particularly for the diagnosis of NCC. The possibility of testing the same serum sample simultaneously for the presence of antibodies against both antigens is an added value particularly in seroprevalence studies for cysticercosis linked to control programs in endemic areas where these two parasites coexist.


2022 ◽  
Author(s):  
Geetika Aggarwal ◽  
Subhashis Banerjee ◽  
Spencer A. Jones ◽  
Monica D. Pavlack ◽  
Yousri Benchaar ◽  
...  

Loss-of-function GRN mutations result in progranulin haploinsufficiency and are a common cause of frontotemporal dementia (FTD). Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but ASO-based strategies for increasing target protein levels are still relatively limited. Here, we report the use of ASOs to increase progranulin protein levels by targeting the miR-29b binding site in the 3′ UTR of the GRN mRNA, resulting in increased translation.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 484
Author(s):  
Luke Erber ◽  
Shirelle Liu ◽  
Yao Gong ◽  
Phu Tran ◽  
Yue Chen

Iron and oxygen deficiencies are common features in pathophysiological conditions, such as ischemia, neurological diseases, and cancer. Cellular adaptive responses to such deficiencies include repression of mitochondrial respiration, promotion of angiogenesis, and cell cycle control. We applied a systematic proteomics analysis to determine the global proteomic changes caused by acute hypoxia and chronic and acute iron deficiency (ID) in hippocampal neuronal cells. Our analysis identified over 8600 proteins, revealing similar and differential effects of each treatment on activation and inhibition of pathways regulating neuronal development. In addition, comparative analysis of ID-induced proteomics changes in cultured cells and transcriptomic changes in the rat hippocampus identified common altered pathways, indicating specific neuronal effects. Transcription factor enrichment and correlation analysis identified key transcription factors that were activated in both cultured cells and tissue by iron deficiency, including those implicated in iron regulation, such as HIF1, NFY, and NRF1. We further identified MEF2 as a novel transcription factor whose activity was induced by ID in both HT22 proteome and rat hippocampal transcriptome, thus linking iron deficiency to MEF2-dependent cellular signaling pathways in neuronal development. Taken together, our study results identified diverse signaling networks that were differentially regulated by hypoxia and ID in neuronal cells.


2022 ◽  
Vol 15 ◽  
Author(s):  
Pauline Beckers ◽  
Olaya Lara ◽  
Ines Belo do Nascimento ◽  
Nathalie Desmet ◽  
Ann Massie ◽  
...  

Disruption of the glutamatergic homeostasis is commonly observed in neurological diseases and has been frequently correlated with the altered expression and/or function of astrocytic high-affinity glutamate transporters. There is, however, a growing interest for the role of the cystine-glutamate exchanger system xc– in controlling glutamate transmission. This exchanger is predominantly expressed in glial cells, especially in microglia and astrocytes, and its dysregulation has been documented in diverse neurological conditions. While most studies have focused on measuring the expression of its specific subunit xCT by RT-qPCR or by Western blotting, the activity of this exchanger in tissue samples remains poorly examined. Indeed, the reported use of sulfur- and carbon-radiolabeled cystine in uptake assays shows several drawbacks related to its short radioactive half-life and its relatively high cost. We here report on the elaborate validation of a method using tritiated glutamate as a substrate for the reversed transport mediated by system xc–. The uptake assay was validated in primary cultured astrocytes, in transfected cells as well as in crude synaptosomes obtained from fresh nervous tissue samples. Working in buffers containing defined concentrations of Na+, allowed us to differentiate the glutamate uptake supported by system xc– or by high-affinity glutamate transporters, as confirmed by using selective pharmacological inhibitors. The specificity was further demonstrated in primary astrocyte cultures from transgenic mice lacking xCT or in cell lines where xCT expression was genetically induced or reduced. As such, this assay appears to be a robust and cost-efficient solution to investigate the activity of this exchanger in physiological and pathological conditions. It also provides a reliable tool for the screening and characterization of new system xc– inhibitors which have been frequently cited as valuable drugs for nervous disorders and cancer.


Sign in / Sign up

Export Citation Format

Share Document