SCGRNs: Novel supervised inference of single-cell gene regulatory networks of complex diseases

2020 ◽  
Vol 118 ◽  
pp. 103656 ◽  
Author(s):  
Turki Turki ◽  
Y-h. Taguchi
2020 ◽  
Author(s):  
Turki Turki ◽  
Y-h. Taguchi

AbstractAnalyzing single-cell pancreatic data would play an important role in understanding various metabolic diseases and health conditions. Due to the sparsity and noise present in such single-cell gene expression data, analyzing various functions related to the inference of gene regulatory networks, derived from single-cell data, remains difficult, thereby posing a barrier to the deepening of understanding of cellular metabolism. Since recent studies have led to the reliable inference of single-cell gene regulatory networks (SCGRNs), the challenge of discriminating between SCGRNs has now arisen. By accurately discriminating between SCGRNs (e.g., distinguishing SCGRNs of healthy pancreas from those of T2D pancreas), biologists would be able to annotate, organize, visualize, and identify common patterns of SCGRNs for metabolic diseases. Such annotated SCGRNs could play an important role in speeding up the process of building large data repositories. In this study, we aimed to contribute to the development of a novel deep learning (DL) application. First, we generated a dataset consisting of 224 SCGRNs belonging to both T2D and healthy pancreas and made it freely available. Next, we chose seven DL architectures, including VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the dataset, and checked prediction based on a test set. We evaluated the DL architectures on an HP workstation platform with a single NVIDIA GeForce RTX 2080Ti GPU. Experimental results on the whole dataset, using several performance measures, demonstrated the superiority of VGG19 DL model in the automatic classification of SCGRNs, derived from the single-cell pancreatic data.


2021 ◽  
Author(s):  
Abdullah Karaaslanli ◽  
SATABDI SAHA ◽  
Selin Aviyente ◽  
Tapabrata Maiti

Characterizing the underlying topology of gene regulatory networks is one of the fundamental problems of systems biology. Ongoing developments in high throughput sequencing technologies has made it possible to capture the expression of thousands of genes at the single cell resolution. However, inherent cellular heterogeneity and high sparsity of the single cell datasets render void the application of regular Gaussian assumptions for constructing gene regulatory networks. Additionally, most algorithms aimed at single cell gene regulatory network reconstruction, estimate a single network ignoring group-level (cell-type) information present within the datasets. To better characterize single cell gene regulatory networks under different but related conditions we propose the joint estimation of multiple networks using multiview graph learning (mvGL). The proposed method is developed based on recent works in graph signal processing (GSP) for graph learning, where graph signals are assumed to be smooth over the unknown graph structure. Graphs corresponding to the different datasets are regularized to be similar to each other through a learned consensus graph. We further kernelize mvGL with the kernel selected to suit the structure of single cell data. An efficient algorithm based on prox-linear block coordinate descent is used to optimize mvGL. We study the performance of mvGL using synthetic data generated with a diverse set of parameters. We further show that mvGL successfully identifies well-established regulators in a mouse embryonic stem cell differentiation study and a cancer clinical study of medulloblastoma.


2017 ◽  
Author(s):  
F. Alexander Wolf ◽  
Philipp Angerer ◽  
Fabian J. Theis

We present Scanpy, a scalable toolkit for analyzing single-cell gene expression data. It includes preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing and simulation of gene regulatory networks. The Python-based implementation efficiently deals with datasets of more than one million cells and enables easy interfacing of advanced machine learning packages. Code is available fromhttps://github.com/theislab/scanpy.


Patterns ◽  
2021 ◽  
Vol 2 (9) ◽  
pp. 100332
Author(s):  
N. Alexia Raharinirina ◽  
Felix Peppert ◽  
Max von Kleist ◽  
Christof Schütte ◽  
Vikram Sunkara

Sign in / Sign up

Export Citation Format

Share Document