metabolic diseases
Recently Published Documents





2023 ◽  
Vol 76 (07) ◽  
pp. 6374-2023 ◽  

Recently, interest in glucagon-like peptide-1 (GLP-1) and other peptides derived from preproglucagon has increased significantly. GLP-1 is a 30-amino acid peptide hormone produced in L-type enteroendocrine cells as a response to food intake. GLP-1 is rapidly metabolized and inactivated by the dipeptidyl peptidase IV enzyme before the hormone leaves the intestine, which increases the likelihood that GLP-1 action is transmitted through sensory neurons in the intestine and liver through the GLP-1 receptor. The main actions of GLP-1 are to stimulate insulin secretion (i.e. act as incretin hormone) and inhibit glucagon secretion, thus contributing to the reduction of postprandial glucose spikes. GLP-1 also inhibits motility and gastrointestinal secretion, and therefore acts as part of the „small bowel brake” mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these effects, GLP-1 or GLP-1 receptor agonists are now increasingly used to treat type 2 diabetes. Reduced GLP-1 secretion may contribute to the development of obesity, and excessive secretion may be responsible for postprandial reactive hypoglycemia. The use of GLP-1 agonists opens up new possibilities for the treatment of type 2 diabetes and other metabolic diseases. In the last two decades, many interesting studies covering both the physiological and pathophysiological role of GLP-1 have been published, and our understanding of GLP-1 has broadened significantly. In this review article, we have tried to describe our current understanding of how GLP-1 works as both a peripheral hormone and as a central neurotransmitter in health and disease. We focused on its biological effects on the body and the potential clinical application in relation to current research.

2022 ◽  
Vol 124 (2) ◽  
pp. 151844
Navid Abedpoor ◽  
Farzaneh Taghian ◽  
Fatemeh Hajibabaie

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 178
Federica Barutta ◽  
Stefania Bellini ◽  
Marilena Durazzo ◽  
Gabriella Gruden

Periodontitis and diabetes are two major global health problems despite their prevalence being significantly underreported and underestimated. Both epidemiological and intervention studies show a bidirectional relationship between periodontitis and diabetes. The hypothesis of a potential causal link between the two diseases is corroborated by recent studies in experimental animals that identified mechanisms whereby periodontitis and diabetes can adversely affect each other. Herein, we will review clinical data on the existence of a two-way relationship between periodontitis and diabetes and discuss possible mechanistic interactions in both directions, focusing in particular on new data highlighting the importance of the host response. Moreover, we will address the hypothesis that trained immunity may represent the unifying mechanism explaining the intertwined association between diabetes and periodontitis. Achieving a better mechanistic insight on clustering of infectious, inflammatory, and metabolic diseases may provide new therapeutic options to reduce the risk of diabetes and diabetes-associated comorbidities.

2022 ◽  
Vol 23 (2) ◽  
pp. 929
Alessandra Antonucci ◽  
Antonella Marucci ◽  
Vincenzo Trischitta ◽  
Rosa Di Paola

O-linked glycosylation, the greatest form of post-translational modifications, plays a key role in regulating the majority of physiological processes. It is, therefore, not surprising that abnormal O-linked glycosylation has been related to several human diseases. Recently, GALNT2, which encodes the GalNAc-transferase 2 involved in the first step of O-linked glycosylation, has attracted great attention as a possible player in many highly prevalent human metabolic diseases, including atherogenic dyslipidemia, type 2 diabetes and obesity, all clustered on the common ground of insulin resistance. Data available both in human and animal models point to GALNT2 as a molecule that shapes the risk of the aforementioned abnormalities affecting diverse protein functions, which eventually cause clinically distinct phenotypes (a typical example of pleiotropism). Pathways linking GALNT2 to dyslipidemia and insulin resistance have been partly identified, while those for type 2 diabetes and obesity are yet to be understood. Here, we will provide a brief overview on the present knowledge on GALNT2 function and dysfunction and propose novel insights on the complex pathogenesis of the aforementioned metabolic diseases, which all impose a heavy burden for patients, their families and the entire society.

Sara Al-Ghadban ◽  
Maria Artiles ◽  
Bruce A. Bunnell

Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.

2022 ◽  
Gabriel Richard ◽  
Denis P. Blondin ◽  
Saad A. Syed ◽  
Laura Rossi ◽  
Michelle E. Fontes ◽  

Diets rich in added sugars, especially high in fructose, are associated with metabolic diseases such as insulin resistance, and non-alcoholic fatty liver disease. Studies have shown a link between these pathologies and changes in the microbiome and its metabolites. Given the reported associations in animal models between the microbiome and brown or beige adipose tissue (BAT) function, and the alterations in the microbiome induced by high glucose or high fructose diets, we investigated the potential causal link between high glucose or fructose diets and BAT dysfunction in humans. We show that BAT glucose uptake, but not thermogenesis, is impaired by a high fructose but not high glucose diet, in the absence of changes in body mass, the gastrointestinal microbiome, and faecal short-chain fatty acids. We conclude that BAT metabolic dysfunction occurs independently from changes in gut microbiome composition, and earlier than other pathophysiological abnormalities associated with insulin resistance and dyslipidemia during fructose overconsumption in humans.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 307
Chunxiao Ni ◽  
Qingqing Jia ◽  
Gangqiang Ding ◽  
Xifeng Wu ◽  
Min Yang

We aimed to investigate the effects of a low-glycemic index (GI) diet on the body mass and blood glucose of patients with four common metabolic diseases by conducting a systematic review and meta-analysis of studies comparing a low-GI diet (LGID) and other types of diet. Search terms relating to population, intervention, comparator, outcomes, and study design were used to search three databases: PubMed, Embase, and the Cochrane Library. We identified 24 studies involving 2002 participants. Random-effects models were used for 16 studies in the meta-analysis and stratified analyses were performed according to the duration of the intervention. The systematic review showed that LGIDs slightly reduced body mass and body mass index (BMI) (p < 0.05). BMI improved more substantially after interventions of >24 weeks and there was no inter-study heterogeneity (I2 = 0%, p = 0.48; mean difference (MD) = −2.02, 95% confidence interval (CI): −3.05, −0.98). Overall, an LGID had superior effects to a control diet on fasting blood glucose (FBG) and glycosylated hemoglobin. When the intervention exceeded 30 days, an LGID reduced FBG more substantially (MD = −0.34, 95% CI: −0.55, −0.12). Thus, for patients with metabolic diseases, an LGID is more effective at controlling body mass and blood glucose than a high-GI or other diet.

Francesca Cuomo ◽  
Carmela Dell’Aversana ◽  
Teresa Chioccarelli ◽  
Veronica Porreca ◽  
Francesco Manfrevola ◽  

Maintenance of energy balance between intake and expenditure is a prerequisite of human health, disrupted in severe metabolic diseases, such as obesity and type 2 diabetes (T2D), mainly due to accumulation of white adipose tissue (WAT). WAT undergoes a morphological and energetic remodelling toward brown adipose tissue (BAT) and the BAT activation has anti-obesity potential. The mechanisms or the regulatory factors able to activate BAT thermogenesis have been only partially deciphered. Identifying novel regulators of BAT induction is a question of great importance for fighting obesity and T2D. Here, we evaluated the role of Hif3α in murine pre-adipocyte 3T3-L1 cell line, a versatile and well characterized biological model of adipogenesis, by gain- and loss-of function approaches and in thermogenesis-induced model in vivo. HIF3A is regulated by inflammation, it modulates lypolysis in adipose tissue of obese adults, but its role in energy metabolism has not previously been investigated. We characterized gene and protein expression patterns of adipogenesis and metabolic activity in vitro and mechanistically in vivo. Overexpression of Hif3α in differentiating adipocytes increases white fat cells, whereas silencing of Hif3α promotes “browning” of white cells, activating thermogenesis through upregulation of Ucp1, Elovl3, Prdm16, Dio2 and Ppargc1a genes. Investigating cell metabolism, Seahorse Real-Time Cell Metabolism Analysis showed that silencing of Hif3α resulted in a significant increase of mitochondrial uncoupling with a concomitant increase in acetyl-CoA metabolism and Sirt1 and Sirt3 expression. The causal Hif3α/Ucp1 inverse relation has been validated in Cannabinoid receptor 1 (CB1) knockout, a thermogenesis-induced model in vivo. Our data indicate that Hif3α inhibition triggers “browning” of white adipocytes activating the beneficial thermogenesis rewiring energy metabolism in vitro and in vivo. HIF3A is a novel player that controls the energy metabolism with potential applications in developing therapy to fight metabolic disorders, as obesity, T2D and ultimately cancer.

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Cengiz Callender ◽  
Ilias Attaye ◽  
Max Nieuwdorp

Cardio-metabolic diseases (CMD) are a spectrum of diseases (e.g., type 2 diabetes, atherosclerosis, non-alcohol fatty liver disease (NAFLD), and metabolic syndrome) that are among the leading causes of morbidity and mortality worldwide. It has long been known that bile acids (BA), which are endogenously produced signalling molecules from cholesterol, can affect CMD risk and progression and directly affect the gut microbiome (GM). Moreover, studies focusing on the GM and CMD risk have dramatically increased in the past decade. It has also become clear that the GM can function as a “new” endocrine organ. BA and GM have a complex and interdependent relationship with several CMD pathways. This review aims to provide a comprehensive overview of the interplay between BA metabolism, the GM, and CMD risk and progression.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 286
Julia Lischka ◽  
Andrea Schanzer ◽  
Margot Baumgartner ◽  
Charlotte de Gier ◽  
Susanne Greber-Platzer ◽  

The obesity epidemic has contributed to an escalating prevalence of metabolic diseases in children. Overnutrition leads to increased tryptophan uptake and availability. An association between the induction of the tryptophan catabolic pathway via indoleamine 2,3-dioxygenase (IDO) activity and obesity-related inflammation has been observed. This study aimed to investigate the impact of pediatric obesity on tryptophan metabolism and the potential relationship with metabolic disease. In this prospective cohort study, plasma kynurenine, tryptophan, and serotonin levels were measured by ELISA, and IDO activity was estimated by calculating the kynurenine/tryptophan ratio in a clinically characterized population with severe obesity (BMI ≥ 97th percentile) aged 9 to 19 (n = 125). IDO activity and its product kynurenine correlated with BMI z-score and body fat mass, whereas concentrations of serotonin, the alternative tryptophan metabolite, negatively correlated with these measures of adiposity. Kynurenine and tryptophan, but not serotonin levels, were associated with disturbed glucose metabolism. Tryptophan concentrations negatively correlated with adiponectin and were significantly higher in prediabetes and metabolically unhealthy obesity. In conclusion, BMI and body fat mass were associated with increased tryptophan catabolism via the kynurenine pathway and decreased serotonin production in children and adolescents with severe obesity. The resulting elevated kynurenine levels may contribute to metabolic disease in obesity.

Sign in / Sign up

Export Citation Format

Share Document