A direct-forcing immersed boundary method for the thermal lattice Boltzmann method

2011 ◽  
Vol 49 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Shin K. Kang ◽  
Yassin A. Hassan
Author(s):  
Sajjad Karimnejad ◽  
Amin Amiri Delouei ◽  
Mohsen Nazari ◽  
Mohammad Mohsen Shahmardan ◽  
Goodarz Ahmadi ◽  
...  

Abstract In this study, the hybrid immersed boundary-thermal lattice Boltzmann method was developed and applied to assess the inclusion of heat transfer in flows containing non-circular particles. The direct forcing/heating immersed boundary method was used for determining the hydrodynamic forces and energy exchange. A complementary method was also implemented to treat non-circularity. The accuracy of the computational model and the employed complementary method were properly validated. Two cases for the falling ellipse were considered. A set of comprehensive simulations were performed and the effects of geometry, Grashof number, repulsive force, and heat transfer were analyzed. The findings of this study would be useful for a better understanding of settling non-circular particles in a thermal field.


Sign in / Sign up

Export Citation Format

Share Document