Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs

2020 ◽  
Vol 125 ◽  
pp. 103652 ◽  
Author(s):  
Junpeng Zou ◽  
Yu-Yong Jiao ◽  
Zhicheng Tang ◽  
Yinlin Ji ◽  
Chengzeng Yan ◽  
...  
2013 ◽  
Vol 53 (1) ◽  
pp. 375
Author(s):  
Chaolang Qiu ◽  
Mofazzal Hossain ◽  
Hassan Bahrami ◽  
Yangfan Lu

With the reduction of conventional reserves, the demand and exploration of unconventional sources becomes increasingly important in the energy supply system. Low permeability, low porosity, and the complexities of rock formation in unconventional gas reservoirs make it difficult to extract commercially viable gas resources. Hydraulic fracture is the most common technique used for commercial production of hydrocarbon resources from unconventional tight-gas reservoirs. Due to the existence of an extremely long transient-flow period in tight-gas reservoirs, the interpretation of welltest data based on conventional welltest analysis is quite challenging, and could potentially lead to misleading results. This peer-reviewed paper presents a new approach based on a log-log reciprocal rate derivative plot. Emphases are given on the identification of factors affecting the welltest response in multiple hydraulic-fractured wells in unconventional gas reservoirs based on numerical simulation. The objective is to investigate the sensitivity of various reservoir and hydraulic-fracture parameters, such as multiple hydraulic-fracture size, fracture number and fracture orientation on welltest response, and the effect of the pressure derivative curve on the slopes of welltest diagnostic plots, as well as on well productivity performance. The results can be used to understand the welltest response for different hydraulic-fracturing scenarios for the efficiency and characteristics of hydraulic fractures.


Sign in / Sign up

Export Citation Format

Share Document