hydraulic fracture propagation
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 132)

H-INDEX

30
(FIVE YEARS 8)

Energy ◽  
2021 ◽  
pp. 122845
Author(s):  
Zhaoyi Liu ◽  
Zhejun Pan ◽  
Shibin Li ◽  
Ligang Zhang ◽  
Fengshan Wang ◽  
...  

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yulong Zhang ◽  
Bei Han ◽  
Xin Zhang ◽  
Yun Jia ◽  
Chun Zhu

Abstract The interaction mode of induced fracture and natural fracture plays an important role in prediction of hydraulic fracture propagation. In this paper, a two-dimensional hydromechanical coupled discrete element model is first introduced in the framework of particle flow simulation, which can well take into account mechanical and hydraulic properties of rock samples with natural fracture. The model’s parameters are strictly calibrated by conducting numerical simulations of uniaxial compression test and direct tensile and shear tests, as well as fluid flow test. The effectiveness of coupled model is also assessed by describing hydraulic fracture propagation in two representative cases, respectively, rock samples with and without preexisting fracture. With this model in hand, the effects of interaction between induced and natural fractures with different approach angles and differential stresses on fluid injection pressure and fracture propagation patterns are investigated and discussed. Results suggest that the interaction modes mainly involve three basic behaviors including the arrested, captured with offset, and directly crossing. For a given differential stress, the captured offset of hydraulic fracture by natural fracture gradually decreases with the approach angle increase, while for a fixed approach angle, that captured offset increases with differential stress decrease.


2021 ◽  
Vol 11 (22) ◽  
pp. 11004
Author(s):  
Anton Azarov ◽  
Andrey Patutin ◽  
Sergey Serdyukov

In this paper, we investigate the problem of the propagation of hydraulic fractures in a poroelastic medium that has a circular cavity. The research was conducted using the extended finite element method (XFEM) implemented in the ABAQUS software package. The problem was considered in a plane formulation. The initial crack was oriented parallel to the surface of the cavity. It was shown that the path of the hydraulic fracture depends strongly on the hydrostatic stress in the medium and the distance between the crack and the cavity. We studied the influences of the poroelastic parameters, such as permeability and the Biot coefficient, on the propagation of cracks. It was shown that the cracks were less curved when the coupled problem of poroelasticity was considered. The features of fluid pressure changes inside the fracture and at the opening of the mouth were studied. It was shown that the fluid pressure in the fracture during injection was minimally sensitive to the state of the stress in the medium, to the position of the initial crack, and to the poroelastic parameters. The solution to the problem in this setting can be used to simulate hydraulic fracturing close to mine workings during a controlled roof’s collapse to prevent it from hanging, and the formation of impervious screens to reduce airflow from the mine to degassing boreholes through the rock, for example.


Sign in / Sign up

Export Citation Format

Share Document