numerical simulator
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 31)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012011
Author(s):  
Jiancheng Zhou ◽  
Chenghao Yu ◽  
Ying Wang

Abstract Silicon Carbide (SiC) power MOSFET is the next generation device in the supply system of spacecraft. However, the current degradation or catastrophic failure of the power device could be induced when a drain voltage exceeds critical condition. In this article, an improved VDMOSFET structure for the Single-Event Burnout (SEB) is demonstrated. The improved power VDMOSFET includes a P+ shielding region at the JFET region. Meanwhile, forming a CSL layer by ion-implantation at the JFET to reduce the specific on-resistance. The device is etched in both sides to form trench and then implanting N-type impurities at the side walls of the trench to form the N+ split source (SDS-VDMOSFET). The 2-D numerical simulator Silvaco Atlas was used to study the SEB performance for the 1.2 kV-rated SiC SDS-VDMOSFET in a high linear energy transfer (LET) value of 0.5 pC/μm. The simulation results show that the improved structure can effectively reduce the peak lattice temperature induced by heavy-ion and increase the SEB threshold voltage compared with the standard VDMOSFET. Furthermore, the improved structure also presents a lower specific on-resistance. As a result, the maximum temperature of the standard VDMOSFET has exceeded 3000 K at a drain voltage of 400 V. However, the maximum temperature of the improved VDMOSFET is only 2090 K at a drain voltage of 800 V.


2021 ◽  
Vol 33 (6) ◽  
pp. 1234-1247
Author(s):  
Norimitsu Sakagami ◽  
Mizuho Shibata ◽  
Tomohiro Ueda ◽  
Kensei Ishizu ◽  
Kenshiro Yokoi ◽  
...  

This report describes a numerical and experimental study of a posture control device based on a movable float for portable underwater robots. We numerically analyzed the static stability using a stability curve and allowable spatial range of a center-of-gravity shift caused by a payload shift or manipulator configuration. Further, we proposed a feedback controller based on direct pitch and roll signals to change and maintain robot posture. We tested the feedback control using a numerical simulator and conducted experiments in a water tank using two portable underwater robots to demonstrate the effectiveness of the movable float device and proposed controller. The results of the field experiments showed that the device and proposed controller can be employed for effective underwater operations of portable underwater robots.


Author(s):  
Anton Schneider ◽  
Jean Desmariaux ◽  
Josef Klevanski ◽  
Silvio Schröder ◽  
Lars Witte

AbstractPrior to landing of reusable space transportation systems, the vehicle’s landing legs needs to be fully deployed to enable a safe landing and further re-use of the space vehicle. During that phase the deployment system has to overcome harsh and challenging environmental conditions. In this study, a numerical simulator is developed in order to investigate these influences on the landing leg deployment dynamics. By means of an extensive aerodynamic database and a broad approach flight domain, the influence of aerodynamics, exhaust plume, and vehicle’s attitude on the deployment dynamics is analyzed. This study shows on the example of the first stage demonstrator CALLISTO (Cooperative Action Leading to Launcher Innovation in Stage Toss back Operations), that thrust level, vehicle attitude, and the deployment system parameters affect the deployment performance.


2021 ◽  
Author(s):  
Bondan Bernadi ◽  
Ihab Nabil Mohamed ◽  
Ahmed Mohamed Al Bairaq ◽  
Mariam Ahmed Al Hosani ◽  
Azer Abdullayev ◽  
...  

Abstract A comprehensive study of a giant onshore Abu Dhabi gas field using a next-generation commercial numerical simulator has been conducted. The objective was to identify the distribution and track the movement of the gas condensate in the reservoir, and to develop strategies to minimize the condensate drop-out and improve condensate recovery from the field. The field contains a large gas cap and an oil rim. We have identified the distribution of the gas condensate throughout the reservoir and were able to track its movement using the advanced fluid tracking option in the simulator. Once the gas condensate drop-out regions in the reservoir are identified, sensitivity runs with localized changes are carried out to improve the recovery from the reservoir. The strategies to mitigate drop-out include adding infill wells, drilling multi-lateral wells, reinjecting CO2 and dry gas into the reservoir, and hydraulic fracturing near the well bore. We were able to track the distribution of the condensate throughout the reservoir and identified key condensate drop-out regions. Adding infill wells improved the recovery of the condensate. Implementing multi-lateral wells also showed improved condensate recovery in the field. Hydraulic fracturing near the wellbore reduced condensate banking near the wellbore. Injecting dry gas improved the condensate recovery by a re-vaporization process where the liquid condensate is absorbed by dry gas. This paper discusses a comprehensive study on tracking the condensate distribution in a giant onshore field using a commercial simulator. The authors have performed a thorough investigation to identify an optimal condensate recovery strategy for the field, by comparing various recovery strategies using the full field reservoir simulation model.


2021 ◽  
pp. 1-16
Author(s):  
John Carlo S. Garcia ◽  
Niccolo Giannetti ◽  
Daryl Anne B. Varela ◽  
Richard Jayson Varela ◽  
Seiichi Yamaguchi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6210
Author(s):  
Ryo Arai ◽  
Satoru Sakai ◽  
Akihiro Tatsuoka ◽  
Qin Zhang

This paper discusses energy behaviors in hydraulic cylinder dynamics, which are important for model-based control of agriculture scale excavators. First, we review hydraulic cylinder dynamics and update our physical parameter identification method to agriculture scale experimental excavators in order to construct a nominal numerical simulator. Second, we analyze the energy behaviors from the port-Hamiltonian point of view which provides many links to model-based control at laboratory scale at least. At agriculture scale, even though the nominal numerical simulator is much simpler than an experimental excavator, the analytical, experimental, and numerical energy behaviors are very close to each other. This implies that the port-Hamiltonian point of view will be applicable in agriculture scale against modeling errors.


2021 ◽  
Author(s):  
Hani Akbari

Implementation of finite element method (FEM) needs special cares, particularly for essential boundary conditions that have an important effect on symmetry and number of unknowns in the linear systems. Moreover, avoiding numerical integration and using (off-line) calculated element integrals decrease the computational cost significantly. In this chapter we briefly present theoretical topics of FEM. Instead we focus on what is important (and how) to carefully implement FEM for equations that can be the core of a numerical simulator for a diffusion–advection-reaction problem. We consider general 2D and 3D domains, high contrast and heterogeneous diffusion coefficients and generalize the method to nonlinear parabolic equations. Although we use Matlab codes to simplify the explanation of the proposed method, we have implemented it in C++ to reveal the efficiency and examples are presented to admit it.


2021 ◽  
Author(s):  
Kousha Gohari ◽  
Julian Ortiz ◽  
Anson Abraham ◽  
Oscar Becerra Moreno ◽  
Mazda Irani ◽  
...  

Abstract Steam-Assisted Gravity Drainage (SAGD) is a complex process that often requires more control relative to conventional applications during production operations. Flow Control Devices (FCDs) have been identified as one of the technologies that offer improved downhole steam utilization and injection/production efficiency. The first FCD completions, with a helical geometry, were installed in SAGD wells at the ConocoPhillips Surmont project over a decade ago. The installations have shown improved steam chamber conformance and reduced steam-oil ratio (SOR) while accelerating bitumen production. Since then, various FCD geometries have been investigated and used, with several of them explicitly designed with a steam blocking capability. This study used a numerical simulator to investigate the performance of these various FCD geometries. This comprehensive study started testing several geometries in a flow loop and using the data obtained to develop a mechanistic model to characterize the flow performance of the FCDs and finally evaluating their performance in a holistic manner via a numerical simulator. By using mechanistic modeling, it was ensured that the performance of the devices was accurately represented, and the physics of the process were considered. The analysis used a commercially available numerical simulator to evaluate the performance of the various FCD geometries in SAGD operation. Three sector models representing different reservoir qualities observed in Surmont were used for the analysis. Additionally, various operating strategies were investigated for each sector model to ensure that a comprehensive understanding of each FCD geometry was achieved. The results of this study showed that FCD flow resistance setting or nozzle size played a significant role in the production performance of the wells in liner deployed FCD applications. Additionally, the steam blocking geometries resulted in increased cumulative production and lower SOR relative to other geometries. The FCD geometry did also impact the development of the steam chamber. Nevertheless, if the FCD completions are configured with the proper flow resistance setting or nozzle size, they provide a proactive measure, which leads to significantly better performance compared to a non-FCD completion. With lower subcool, the geometry of the FCD has a greater impact on the performance of the well. It was also confirmed that an aggressive operating strategy results in better performance of the FCD completions.


2020 ◽  
Vol 20 (2020) ◽  
pp. 33-34
Author(s):  
Renato Espírito Basso Poli ◽  
Rafael dos Santos Gioria ◽  
Ronaldo Carrion

Sign in / Sign up

Export Citation Format

Share Document