Improving statistical machine translation using shallow linguistic knowledge

2007 ◽  
Vol 21 (2) ◽  
pp. 350-372 ◽  
Author(s):  
Young-Sook Hwang ◽  
Andrew Finch ◽  
Yutaka Sasaki
2016 ◽  
Vol 42 (2) ◽  
pp. 163-205 ◽  
Author(s):  
Arianna Bisazza ◽  
Marcello Federico

Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orient the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.


2004 ◽  
Vol 30 (2) ◽  
pp. 181-204 ◽  
Author(s):  
Sonja Nießen ◽  
Hermann Ney

In statistical machine translation, correspondences between the words in the source and the target language are learned from parallel corpora, and often little or no linguistic knowledge is used to structure the underlying models. In particular, existing statistical systems for machine translation often treat different inflected forms of the same lemma as if they were independent of one another. The bilingual training data can be better exploited by explicitly taking into account the interdependencies of related inflected forms. We propose the construction of hierarchical lexicon models on the basis of equivalence classes of words. In addition, we introduce sentence-level restructuring transformations which aim at the assimilation of word order in related sentences. We have systematically investigated the amount of bilingual training data required to maintain an acceptable quality of machine translation. The combination of the suggested methods for improving translation quality in frameworks with scarce resources has been successfully tested: We were able to reduce the amount of bilingual training data to less than 10% of the original corpus, while losing only 1.6% in translation quality. The improvement of the translation results is demonstrated on two German-English corpora taken from the Verbmobil task and the Nespole! task.


2018 ◽  
Vol 5 (1) ◽  
pp. 37-45
Author(s):  
Darryl Yunus Sulistyan

Machine Translation is a machine that is going to automatically translate given sentences in a language to other particular language. This paper aims to test the effectiveness of a new model of machine translation which is factored machine translation. We compare the performance of the unfactored system as our baseline compared to the factored model in terms of BLEU score. We test the model in German-English language pair using Europarl corpus. The tools we are using is called MOSES. It is freely downloadable and use. We found, however, that the unfactored model scored over 24 in BLEU and outperforms the factored model which scored below 24 in BLEU for all cases. In terms of words being translated, however, all of factored models outperforms the unfactored model.


2009 ◽  
Vol 35 (10) ◽  
pp. 1317-1326
Author(s):  
Hong-Fei JIANG ◽  
Sheng LI ◽  
Min ZHANG ◽  
Tie-Jun ZHAO ◽  
Mu-Yun YANG

Author(s):  
Herry Sujaini

Extended Word Similarity Based (EWSB) Clustering is a word clustering algorithm based on the value of words similarity obtained from the computation of a corpus. One of the benefits of clustering with this algorithm is to improve the translation of a statistical machine translation. Previous research proved that EWSB algorithm could improve the Indonesian-English translator, where the algorithm was applied to Indonesian language as target language.This paper discusses the results of a research using EWSB algorithm on a Indonesian to Minang statistical machine translator, where the algorithm is applied to Minang language as the target language. The research obtained resulted that the EWSB algorithm is quite effective when used in Minang language as the target language. The results of this study indicate that EWSB algorithm can improve the translation accuracy by 6.36%.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Avinash Singh ◽  
Asmeet Kour ◽  
Shubhnandan S. Jamwal

The objective behind this paper is to analyze the English-Dogri parallel corpus translation. Machine translation is the translation from one language into another language. Machine translation is the biggest application of the Natural Language Processing (NLP). Moses is statistical machine translation system allow to train translation models for any language pair. We have developed translation system using Statistical based approach which helps in translating English to Dogri and vice versa. The parallel corpus consists of 98,973 sentences. The system gives accuracy of 80% in translating English to Dogri and the system gives accuracy of 87% in translating Dogri to English system.


Sign in / Sign up

Export Citation Format

Share Document