The m-Schröder paths and m-Schröder numbers

2021 ◽  
Vol 344 (2) ◽  
pp. 112209
Author(s):  
Sheng-Liang Yang ◽  
Mei-yang Jiang
10.37236/5659 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Youngja Park ◽  
Sangwook Kim

Large Schröder paths, sparse noncrossing partitions, partial horizontal strips, and $132$-avoiding alternating sign matrices are objects enumerated by Schröder numbers. In this paper we give formula for the number of Schröder objects with given type and number of connected components. The proofs are bijective using Chung-Feller style. A bijective proof for the number of Schröder objects with given type is provided. We also give a combinatorial interpretation for the number of small Schröder paths.


10.37236/1138 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
William Y. C. Chen ◽  
Toufik Mansour ◽  
Sherry H. F. Yan

We show that matchings avoiding a certain partial pattern are counted by the $3$-Catalan numbers. We give a characterization of $12312$-avoiding matchings in terms of restrictions on the corresponding oscillating tableaux. We also find a bijection between matchings avoiding both patterns $12312$ and $121323$ and Schröder paths without peaks at level one, which are counted by the super-Catalan numbers or the little Schröder numbers. A refinement of the super-Catalan numbers is derived by fixing the number of crossings in the matchings. In the sense of Wilf-equivalence, we use the method of generating trees to show that the patterns 12132, 12123, 12321, 12231, 12213 are all equivalent to the pattern $12312$.


10.37236/4827 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
JiSun Huh ◽  
SeungKyung Park

We study generalized small Schröder paths in the sense of arbitrary sizes of steps. A generalized small Schröder path is a generalized lattice path from $(0,0)$ to $(2n,0)$ with the step set of  $\{(k,k), (l,-l), (2r,0)\, |\, k,l,r \in {\bf P}\}$, where ${\bf P}$ is the set of positive integers, which never goes below the $x$-axis, and with no horizontal steps at level 0.  We find a bijection between 5-colored Dyck paths and generalized small Schröder paths, proving that the number of generalized small Schröder paths is equal to $\sum_{k=1}^{n} N(n,k)5^{n-k}$ for $n\geq 1$.


10.37236/1385 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Robert A. Sulanke

Consider lattice paths in Z$^2$ with three step types: the up diagonal $(1,1)$, the down diagonal $(1,-1)$, and the double horizontal $(2,0)$. For $n \geq 1$, let $S_n$ denote the set of such paths running from $(0,0)$ to $(2n,0)$ and remaining strictly above the x-axis except initially and terminally. It is well known that the cardinalities, $r_n = |S_n|$, are the large Schröder numbers. We use lattice paths to interpret bijectively the recurrence $ (n+1) r_{n+1} = 3(2n - 1) r_{n} - (n-2) r_{n-1}$, for $n \geq 2$, with $r_1=1$ and $r_2=2$. We then use the bijective scheme to prove a result of Kreweras that the sum of the areas of the regions lying under the paths of $S_n$ and above the x-axis, denoted by $AS_n$, satisfies $ AS_{n+1} = 6 AS_n - AS_{n-1}, $ for $n \geq 2$, with $AS_1 =1$, and $AS_2 =7$. Hence $AS_n = 1, 7, 41, 239 ,1393, \ldots$. The bijective scheme yields analogous recurrences for elevated Catalan paths.


2017 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Michael W. Schroeder ◽  
Rebecca Smith

We consider a sorting machine consisting of two stacks in series where the first stack has the added restriction that entries in the stack must be in decreasing order from top to bottom. The class of permutations sortable by this machine are known to be enumerated by the Schröder numbers. In this paper, we give a bijection between these sortable permutations of length $n$ and Schröder paths -- the lattice paths from $(0,0)$ to $(n-1,n-1)$ composed of East steps $(1,0)$, North steps $(0,1)$, and Diagonal steps $(1,1)$ that travel weakly below the line $y=x$.


10.37236/1950 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunwei Song

While the standard Catalan and Schröder theories both have been extensively studied, people have only begun to investigate higher dimensional versions of the Catalan number (see, say, the 1991 paper of Hilton and Pedersen, and the 1996 paper of Garsia and Haiman). In this paper, we study a yet more general case, the higher dimensional Schröder theory. We define $m$-Schröder paths, find the number of such paths from $(0,0)$ to $(mn, n)$, and obtain some other results on the $m$-Schröder paths and $m$-Schröder words. Hoping to generalize classical $q$-analogue results of the ordinary Catalan and Schröder numbers, such as in the works of Fürlinger and Hofbauer, Cigler, and Bonin, Shapiro and Simion, we derive a $q$-identity which would welcome a combinatorial interpretation. Finally, we introduce the ($q, t$)-$m$-Schröder polynomial through "$m$-parking functions" and relate it to the $m$-Shuffle Conjecture of Haglund, Haiman, Loehr, Remmel and Ulyanov.


2016 ◽  
Vol 47 (4) ◽  
pp. 717-732 ◽  
Author(s):  
Feng Qi ◽  
Xiao-Ting Shi ◽  
Bai-Ni Guo
Keyword(s):  

2006 ◽  
Vol 113 (5) ◽  
pp. 466
Author(s):  
Emeric Deutsch ◽  
José Heber Nieto
Keyword(s):  

2011 ◽  
Vol 131 (12) ◽  
pp. 2387-2397 ◽  
Author(s):  
Zhi-Wei Sun

Sign in / Sign up

Export Citation Format

Share Document