scholarly journals Generalized Small Schröder Numbers

10.37236/4827 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
JiSun Huh ◽  
SeungKyung Park

We study generalized small Schröder paths in the sense of arbitrary sizes of steps. A generalized small Schröder path is a generalized lattice path from $(0,0)$ to $(2n,0)$ with the step set of  $\{(k,k), (l,-l), (2r,0)\, |\, k,l,r \in {\bf P}\}$, where ${\bf P}$ is the set of positive integers, which never goes below the $x$-axis, and with no horizontal steps at level 0.  We find a bijection between 5-colored Dyck paths and generalized small Schröder paths, proving that the number of generalized small Schröder paths is equal to $\sum_{k=1}^{n} N(n,k)5^{n-k}$ for $n\geq 1$.

10.37236/5659 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Youngja Park ◽  
Sangwook Kim

Large Schröder paths, sparse noncrossing partitions, partial horizontal strips, and $132$-avoiding alternating sign matrices are objects enumerated by Schröder numbers. In this paper we give formula for the number of Schröder objects with given type and number of connected components. The proofs are bijective using Chung-Feller style. A bijective proof for the number of Schröder objects with given type is provided. We also give a combinatorial interpretation for the number of small Schröder paths.


2017 ◽  
Vol 09 (06) ◽  
pp. 1750077
Author(s):  
Kairi Kangro ◽  
Mozhgan Pourmoradnasseri ◽  
Dirk Oliver Theis

A dispersed Dyck path (DDP) of length [Formula: see text] is a lattice path on [Formula: see text] from [Formula: see text] to [Formula: see text] in which the following steps are allowed: “up” [Formula: see text]; “down” [Formula: see text]; and “right” [Formula: see text]. An ascent in a DDP is an inclusion-wise maximal sequence of consecutive up steps. A 1-ascent is an ascent consisting of exactly 1 up step. We give a closed formula for the total number of 1-ascents in all dispersed Dyck paths of length [Formula: see text], #A191386 in Sloane’s OEIS. Previously, only implicit generating function relations and asymptotics were known.


10.37236/1138 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
William Y. C. Chen ◽  
Toufik Mansour ◽  
Sherry H. F. Yan

We show that matchings avoiding a certain partial pattern are counted by the $3$-Catalan numbers. We give a characterization of $12312$-avoiding matchings in terms of restrictions on the corresponding oscillating tableaux. We also find a bijection between matchings avoiding both patterns $12312$ and $121323$ and Schröder paths without peaks at level one, which are counted by the super-Catalan numbers or the little Schröder numbers. A refinement of the super-Catalan numbers is derived by fixing the number of crossings in the matchings. In the sense of Wilf-equivalence, we use the method of generating trees to show that the patterns 12132, 12123, 12321, 12231, 12213 are all equivalent to the pattern $12312$.


10.37236/1472 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
E. Pergola ◽  
R. Pinzani

An elevated Schröder path is a lattice path that uses the steps $(1,1)$, $(1,-1)$, and $(2,0)$, that begins and ends on the $x$-axis, and that remains strictly above the $x$-axis otherwise. The total area of elevated Schröder paths of length $2n+2$ satisfies the recurrence $f_{n+1}=6f_n-f_{n-1}$, $n \geq 2$, with the initial conditions $f_0=1$, $f_1=7$. A combinatorial interpretation of this recurrence is given, by first introducing sets of unrestricted paths whose cardinality also satisfies the recurrence relation and then establishing a bijection between the set of these paths and the set of triangles constituting the total area of elevated Schröder paths.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Drew Armstrong ◽  
Brendon Rhoades ◽  
Nathan Williams

International audience Each positive rational number $x>0$ can be written $\textbf{uniquely}$ as $x=a/(b-a)$ for coprime positive integers 0<$a$<$b$. We will identify $x$ with the pair $(a,b)$. In this extended abstract we use $\textit{rational Dyck paths}$ to define for each positive rational $x>0$ a simplicial complex $\mathsf{Ass} (x)=\mathsf{Ass} (a,b)$ called the $\textit{rational associahedron}$. It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the $\textit{rational Catalan number}$ $\mathsf{Cat} (x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)! }{ a! b!}.$ The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its Fuss-Catalan generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that $\mathsf{Ass} (a,b)$ is shellable and give nice product formulas for its $h$-vector (the $\textit{rational Narayana numbers}$) and $f$-vector (the $\textit{rational Kirkman numbers}$). We define $\mathsf{Ass} (a,b)$ .


2021 ◽  
Vol 344 (2) ◽  
pp. 112209
Author(s):  
Sheng-Liang Yang ◽  
Mei-yang Jiang

10.37236/561 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
K. Manes ◽  
A. Sapounakis ◽  
I. Tasoulas ◽  
P. Tsikouras

Let $\tau$ be a fixed lattice path (called in this context string) on the integer plane, consisting of two kinds of steps. The Dyck path statistic "number of occurrences of $\tau$" has been studied by many authors, for particular strings only. In this paper, arbitrary strings are considered. The associated generating function is evaluated when $\tau$ is a Dyck prefix (or a Dyck suffix). Furthermore, the case when $\tau$ is neither a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the statistic "number of occurrences of $\tau$ at height at least $j$" is considered, evaluating the corresponding generating function when $\tau$ is either a Dyck prefix or a Dyck suffix.


10.37236/1385 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Robert A. Sulanke

Consider lattice paths in Z$^2$ with three step types: the up diagonal $(1,1)$, the down diagonal $(1,-1)$, and the double horizontal $(2,0)$. For $n \geq 1$, let $S_n$ denote the set of such paths running from $(0,0)$ to $(2n,0)$ and remaining strictly above the x-axis except initially and terminally. It is well known that the cardinalities, $r_n = |S_n|$, are the large Schröder numbers. We use lattice paths to interpret bijectively the recurrence $ (n+1) r_{n+1} = 3(2n - 1) r_{n} - (n-2) r_{n-1}$, for $n \geq 2$, with $r_1=1$ and $r_2=2$. We then use the bijective scheme to prove a result of Kreweras that the sum of the areas of the regions lying under the paths of $S_n$ and above the x-axis, denoted by $AS_n$, satisfies $ AS_{n+1} = 6 AS_n - AS_{n-1}, $ for $n \geq 2$, with $AS_1 =1$, and $AS_2 =7$. Hence $AS_n = 1, 7, 41, 239 ,1393, \ldots$. The bijective scheme yields analogous recurrences for elevated Catalan paths.


Author(s):  
Sreelatha Chandragiri

An identity for generating functions is proved in this paper. A novel method to compute the number of restricted lattice paths is developed on the basis of this identity. The method employs a difference equation with non-constant coefficients. Dyck paths, Schr¨oder paths, Motzkins path and other paths are computed to illustrate this method


10.37236/9571 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Andrew Elvey Price ◽  
Alan D. Sokal

We find a Thron-type continued fraction (T-fraction) for the ordinary generating function of the Ward polynomials, as well as for some generalizations employing a large (indeed infinite) family of independent indeterminates. Our proof is based on a bijection between super-augmented perfect matchings and labeled Schröder paths, which generalizes Flajolet's bijection between perfect matchings and labeled Dyck paths.


Sign in / Sign up

Export Citation Format

Share Document