The value of reneging for strategic customers in queueing systems with server vacations/failures

Author(s):  
Antonis Economou ◽  
Dimitrios Logothetis ◽  
Athanasia Manou
1996 ◽  
Vol 9 (4) ◽  
pp. 551-562 ◽  
Author(s):  
Jewgeni H. Dshalalow

The paper deals with queueing systems in which N- and D-policies are combined into one. This means that an idle or vacationing server will resume his service if the queueing or workload process crosses some specified fixed level N or D, respectively. For the proposed (N,D)-policy we study the queueing processes in models with and without server vacations, with compound Poisson input, and with generally distributed service and vacation periods. The analysis of the models is essentially based on fluctuation techniques for two-dimensional marked counting processes newly developed by the author. The results enable us to arrive at stationary distributions for the embedded and continuous time parameter queueing processes in closed analytic forms, enhancing the well-known Kendall formulas and their modifications.This article is dedicated to the memory of Roland L. Dobrushin.


Author(s):  
Viktor Afonin ◽  
Vladimir Valer'evich Nikulin

The article focuses on attempt to optimize two well-known Markov systems of queueing: a multichannel queueing system with finite storage, and a multichannel queueing system with limited queue time. In the Markov queuing systems, the intensity of the input stream of requests (requirements, calls, customers, demands) is subject to the Poisson law of the probability distribution of the number of applications in the stream; the intensity of service, as well as the intensity of leaving the application queue is subject to exponential distribution. In a Poisson flow, the time intervals between requirements are subject to the exponential law of a continuous random variable. In the context of Markov queueing systems, there have been obtained significant results, which are expressed in the form of analytical dependencies. These dependencies are used for setting up and numerical solution of the problem stated. The probability of failure in service is taken as a task function; it should be minimized and depends on the intensity of input flow of requests, on the intensity of service, and on the intensity of requests leaving the queue. This, in turn, allows to calculate the maximum relative throughput of a given queuing system. The mentioned algorithm was realized in MATLAB system. The results obtained in the form of descriptive algorithms can be used for testing queueing model systems during peak (unchanged) loads.


2011 ◽  
Author(s):  
Chao Liang ◽  
Metin Cakanyildirim ◽  
Suresh Sethi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document