Modification of microencapsulated phase change materials(MPCMs) by synthesizing graphene quantum dots(GQDs) and nano-aluminum for energy storage and heat transfer applications

Energy ◽  
2019 ◽  
Vol 181 ◽  
pp. 1331-1338 ◽  
Author(s):  
Zhongzhu Qiu ◽  
Yufei Zhou ◽  
Yuan Yao ◽  
Fang Liu ◽  
Ruitang Guo
Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


RSC Advances ◽  
2020 ◽  
Vol 10 (14) ◽  
pp. 8097-8103 ◽  
Author(s):  
Wenbin Wang ◽  
Huimin Cao ◽  
Jingyi Liu ◽  
Shifang Jia ◽  
Lin Ma ◽  
...  

Phase change energy storage wood (PCESW) was prepared by using microencapsulated phase change materials (MicroPCM) as thermal energy storage (TES) materials and wood as the matrix.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
S. Arunachalam

Energy storage helps in waste management, environmental protection, saving of fossil fuels, cost effectiveness, and sustainable growth. Phase change material (PCM) is a substance which undergoes simultaneous melting and solidification at certain temperature and pressure and can thereby absorb and release thermal energy. Phase change materials are also called thermal batteries which have the ability to store large amount of heat at fixed temperature. Effective integration of the latent heat thermal energy storage system with solar thermal collectors depends on heat storage materials and heat exchangers. The practical limitation of the latent heat thermal energy system for successful implementation in various applications is mainly from its low thermal conductivity. Low thermal conductivity leads to low heat transfer coefficient, and thereby, the phase change process is prolonged which signifies the requirement of heat transfer enhancement techniques. Typically, for salt hydrates and organic PCMs, the thermal conductivity range varies between 0.4–0.7 W/m K and 0.15–0.3 W/m K which increases the thermal resistance within phase change materials during operation, seriously affecting efficiency and thermal response. This paper reviews the different geometry of commercial heat exchangers that can be used to address the problem of low thermal conductivity, like use of fins, additives with high thermal conductivity materials like metal strips, microencapsulated PCM, composite PCM, porous metals, porous metal foam matrix, carbon nanofibers and nanotubes, etc. Finally, different solar thermal applications and potential PCMs for low-temperature thermal energy storage were also discussed.


2019 ◽  
Vol 3 (5) ◽  
pp. 1091-1149 ◽  
Author(s):  
Huan Liu ◽  
Xiaodong Wang ◽  
Dezhen Wu

This review focuses on methodologies, technologies and innovative design of microencapsulated PCMs with a variety of shells for versatile applications.


Sign in / Sign up

Export Citation Format

Share Document