An enhanced Borg algorithmic framework for solving the hydro-thermal-wind Co-scheduling problem

Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119512
Author(s):  
Bin Ji ◽  
Binqiao Zhang ◽  
Samson S. Yu ◽  
Dezhi Zhang ◽  
Xiaohui Yuan
Author(s):  
Sunimerjit Kaur ◽  
Yadwinder Singh Brar ◽  
Jaspreet Singh Dhillon

In this paper, a multi-objective hydro-thermal-wind-solar power scheduling problem is established and optimized for the Kanyakumari (Tamil Nadu, India) for the 18th of September of 2020. Four contrary constraints are contemplated for this case study (i) fuel cost and employing cost of wind and solar power system, (ii) NOx emission, (iii) SO2 emission, and (iv) CO2 emission. An advanced hybrid simplex method named as-the -constrained simplex method (ACSM) is deployed to solve the offered problem. To formulate this technique three amendments in the usual simplex method (SM) are adopted (i) -level differentiation, (ii) mutations of the worst point, and (iii) the incorporation of multi-simplexes. The fidelity of the projected practice is trailed upon two test systems. The first test system is hinged upon twenty-four-hour power scheduling of a pure thermal power system. The values of total fuel cost and emissions (NOx, SO2, CO2) are attained as 346117.20 Rs, 59325.23 kg, 207672.70 kg, and 561369.20 kg, respectively. In the second test system, two thermal generators are reintegrated with renewable energy resources (RER) based power systems (hydro, wind, and solar system) for the same power demands. The hydro, wind, and solar data are probed with the Glimn-Kirchmayer model, Weibull Distribution Density Factor, and Normal Distribution model, respectively. For this real-time hydro-thermal-wind-solar power scheduling problem the values of fuel cost and emissions (Nox, SO2, CO2) are shortened to 119589.00 Rs, 24262.24 kg, 71753.80 kg, and 196748.20 kg, respectively for the specified interval. The outturns using ACSM are contrasted with the SM and evolutionary method (EM). The values of the operating cost of solar system, wind system, total system transmission losses, and computational time of test system-2 with ACSM, SM, and EM are evaluated as 620497.40 Rs, 1398340.00 Rs, 476.6948 MW & 15.6 seconds; 620559.45 Rs, 1398479.80 Rs, 476.7425 MW & 16.8 seconds; and 621117.68 Rs, 1399737.80 Rs, 477.1715 MW and 17.3 seconds, respectively. The solutions portray the sovereignty of ACSM over the other two methods in the entire process.


2021 ◽  
Author(s):  
Fengqiao Luo ◽  
Jeffrey Larson

In “A Repeated Route-then-Schedule Approach to Coordinated Vehicle Platooning: Algorithms, Valid Inequalities and Computation,” Luo and Larson propose a novel repeated route-then-schedule algorithmic framework to efficiently solve a complex vehicle routing and scheduling problem arising in the intelligent transportation system. The goal is to maximize the collective savings of a set of vehicles (especially heavy-duty vehicles) by utilizing the fact that platooning vehicles save energy due to reduced aerodynamic drag. In the algorithm, the original simultaneous route-and-schedule approach is decomposed into the routing stage and scheduling stage with a sophisticated learning-like feedback mechanism to update the presumed fuel cost for each vehicle traversing through each road segment. This leads to an iterative change of objective function in the routing problem and thereby changes the routes that are fed to the scheduling problem. This approach helps identify high-quality solution. The algorithmic framework leads to a very tight formulation of subproblems that can be solved in a timely manner.


Sign in / Sign up

Export Citation Format

Share Document