International Journal of Renewable Energy Development
Latest Publications


TOTAL DOCUMENTS

410
(FIVE YEARS 212)

H-INDEX

10
(FIVE YEARS 5)

Published By Institute Of Research And Community Services Diponegoro University (Lppm Undip)

2252-4940, 2252-4940

2022 ◽  
Vol 11 (1) ◽  
pp. 1-13
Author(s):  
Md. Tawhidul Islam ◽  
Md. Elias Hossain

Bangladesh is the most densely populated country in the world. With a total population of around 165 million, the country has constantly been facing food security challenges and other problems. Therefore, increasing food production is one of the feasible solutions to this challenge, and proper agricultural land use for food production bears critical importance. Adopting sustainable irrigation systems and viable technologies would be vital for ensuring efficient use of agricultural land in Bangladesh to safeguard the country's food security. Solar irrigation pumps (SIPs) can be a reliable option in this regard. However, Bangladesh has experienced a prolonged growth rate of SIP installation in the last decade.  The countryhas set a target to install 10000 SIPs by the year 2027, albeit it is a tiny share of the 1.57 million conventional irrigation pumps operating in the country. This study aims to investigate the economic feasibility of the SIPs operating in the northern region of Bangladesh in terms of estimating financial feasibility and environmental benefits. The study is mainly based on primary data collected from the users of SIPs from two Upazilas of Dinajpur and Rangpur districts. A total of 14 SIPs, categorized into large, medium, and small pumps, are selected randomly from the available SIPs in the study areas. The financial analysis reveals that small SIPs are the most profitable option (20% IRR) for investment. Large SIPs are moderately profitable (10% IRR), and their profitability can be improved (10.50% IRR) by introducing additional uses of solar energy. However, medium SIPs are the worst (5% IRR) option for investment. In the study areas, large and medium SIPs are designed for the 'fees for service model', and small SIPs are designed for the 'fees for ownership model'. It is found that the 'fees for ownership model' is more profitable than the 'fees for service model'. Moreover, the net environmental benefit for all SIPs is found almost equal to the given subsidy for installing them. Also, the net environmental benefit per kilowatt peak (kWp) is highest for the small SIPs. This paper recommends that additional use (e.g., husking, grinding, supply excess electricity to grid, and so on) of solar energy can improve the profitability of investmenton SIPs. Further, the government should continue giving grants for installing SIPs and promote 'fees for ownership model' (small SIPs) for personal use. It would speed up the dissemination rate of SIPs and help increase the country's agricultural production and improve the environmental conditions.


2022 ◽  
Vol 11 (2) ◽  
pp. 403-412
Author(s):  
Heri Rustamaji ◽  
Tirto Prakoso ◽  
Jenny Rizkiana ◽  
Hary Devianto ◽  
Pramujo Widiatmoko ◽  
...  

The purpose of this study is to alter the biomass of Sargassum sp. into elective fills and high valuable biomaterials in a hydrothermal process at 200oC for 90 minutes, using ZnCl2 and CaCl2 activating agents, withChClas a catalyst. This method generatedthree primaryoutputs: hydrochar, bio-oil, and gasproducts. ChCl to water ratio varies from 1:3, 1:1, and 3:1. The hydrochar yield improved when the catalyst ratio was increased, but the bio-oil and gas yield declined. The highest hydrochar yields were 76.95, 63.25, and 44.16 percent in ZnCl2, CaCl2, and no activating agent samples, respectively.The porosity analysis observed mesopore structures with the most pore diameters between 3.9-5.2 nm with a surface area between44.71-55.2. The attribute of interaction between activator and catalyst plays a role in pore formation. The hydrochar products with CaCl2 showed the best thermal stability. From the whole experiment, the optimum hydrochar yield (76.95%), optimum surface area (55.42 m2 g-1), and the increase in carbon content from 21.11 to 37.8% were achieved at the ratio of ChCl to water was three, and the activating agent of ZnCl2. The predominant bio-oil components were hexadecane, hexadecanoic, and 9-octadecenoic acids, with a composition of 51.65, 21.44, and 9.87%, respectively the remaining contained aromatic alkanes and other fatty acids. The findings of this study reported that adding activating agents and catalysts improve hydrochar yield and characteristics of hydrochar and bio-oil products, suggesting the potential of hydrochar as a solid fuel or biomaterial and bio-oil as liquid biofuel


2021 ◽  
Vol 11 (2) ◽  
pp. 375-383
Author(s):  
Sudeep Ullattil ◽  
Sudheesh Kakkarath ◽  
Vinod Viswambharanunnithan ◽  
Suresh Padiyath Ramannair

MC-Si is the most widely used material for making solar PV cells. In spite of the considerable research on improving the conversion efficiency of MC-Si solar PV cells still it remains well within the range of 15-20%. Optical reflectance being the major loss of incident solar energy, efforts are being made to reduce the optical reflectance of solar cell surfaces. Among the several methods proposed, creation of well-defined surface topography on the cell surface remains a promising option. Micro/nano level features with various dimensions and distributions have been created on MC-Si crystal surfaces using a femto-second pulsed laser and the influence of surface topography on optical reflectance in the incident light wave length of 350 – 1000 nm have been studied and compared with the simulation results obtained using OPAL2 software. Experimental results indicate that surface textures on the wafer surface lead to the reduction of optical reflectance in the range of 20-35% in comparison with plain surface. Width of micro grooves have less significant effect on the optical reflectance in comparison with pitch between the micro grooves. Best reduction in reflectance is exhibited by the texture having a groove width of 30 mm and a pitch of 100 mm. A post texturing etching operation is found to have detrimental effect on the ability of micro/nano level features in decreasing the optical reflectance in the preferred wavelength of solar spectrum due to the flattening of nano level features created within the micro grooves due to laser texturing.


2021 ◽  
Vol 11 (2) ◽  
pp. 365-373
Author(s):  
Emy Zairah Ahmad ◽  
Hasila Jarimi ◽  
Tajul Rosli Razak

Dust accumulation on the photovoltaic system adversely degrades its power conversion efficiency (PCE). Focusing on residential installations, dust accumulation on PV modules installed in tropical regions may be vulnerable due to lower inclination angles and rainfall that encourage dust settlement on PV surfaces. However, most related studies in the tropics are concerned with studies in the laboratory, where dust collection is not from the actual field, and an accurate performance prediction model is impossible to obtain. This paper investigates the dust-related degradation in the PV output performance based on the developed Artificial Neural Network (ANN) predictive model. For this purpose, two identical monocrystalline modules of 120 Wp were tested and assessed under real operating conditions in Melaka, Malaysia (2.1896° N, 102.2501° E), of which one module was dust-free (clean). At the same time, the other was left uncleaned (dusty) for one month. The experimental datasets were divided into three sets: the first set was used for training and testing purposes, while the second and third, namely Data 2 and Data 3, were used for validating the proposed ANN model. The accuracy study shows that the predicted data using the ANN model and the experimentally acquired data are in good agreement, with MAE and RMSE for the cleaned PV module are as low as 1.28 °C, and 1.96 °C respectively for Data 2 and 3.93 °C and 4.92 °C respectively for Data 3.  Meanwhile, the RMSE and MAE for the dusty PV module are 1.53°C and 2.82 °C respectively for Data 2 and 4.13 °C and 5.26 °C for Data 3. The ANN predictive model was then used for yield forecasting in a residential installation and found that the clean PV system provides a 7.29 % higher yield than a dusty system. The proposed ANN model is beneficial for PV system installers to assess and anticipate the impacts of dust on the PV installation in cities with similar climatic conditions.


2021 ◽  
Vol 11 (2) ◽  
pp. 347-355
Author(s):  
Abu Bakarr Momodu Bangura ◽  
Ridho Hantoro ◽  
Ahmad Fudholi ◽  
Pierre Damien Uwitije

The primary aim of this study was to utilize thermal energy for drying applications on March 21 (day of the year, n = 80) for the climatic weather conditions of Freetown, Sierra Leone. We evaluated the heat absorption of a double-pass solar air collector based on its configuration and exterior input variables before it was designed and mounted at the location of interest. This study considered a steady-state heat transfer using the thermal network procedure for thermodynamic modeling of a double-pass solar collector developed for drying and heating purposes. A mathematical model defining the thermophysical collector properties and many heat transfer coefficients is formed and numerically solved for this purpose. Indeed, this helped us generate the hourly temperature of different heat collector components, which aided in the performance evaluation of the system. The impact of the fluid flowing inside the collector on the temperature of the exit air was analyzed. It was observed that a flow rate of 0.02 kg/s produced an output of 91.72°C. The system's thermal efficiency improves with increased flow rate at various solar radiation intensities. It was observed that the thermal efficiency of the collector increases from 29% to 67% at flow rates of 0.01–0.3 kg/s. Collector lengths of 1.4 and 2.4 m are observed to be economically viable. An increase in the flow rate caused an increase on the efficiency. The hourly outputs for the collector components were represented graphically, and the curve patterns were similar to those of previous studies.


2021 ◽  
Vol 11 (2) ◽  
pp. 357-363
Author(s):  
Soeprijanto Soeprijanto ◽  
Lailatul Qomariyah ◽  
Afan Hamzah ◽  
Saidah Altway

Cassava solid waste (Onggok) is a by-product of the starch industry containing a lot of fiber, especially cellulose and hemicellulose. It has the potential to be converted to bioethanol. This work aimed to evaluate the effect of feedstocks ratio for the optimal bioethanol production via enzymatic and acidic hydrolysis process in a batch fermentation process. The effect of alpha-amylase and glucoamylase activities was studied. The sulfuric acid concentrations in the hydrolysis process in converting cassava into reducing sugar were also investigated. The reducing sugar was then fermented to produce ethanol. Enzymatic and chemical hydrolysis was carried out with the ratio of onggok(g)/water(L), 50/1, 75/1, and 100/1 (w/v). In the enzymatic hydrolysis, 22.5, 45, and 67.5 KNU (Kilo Novo alpha-amylase Unit) for liquefaction; and 65, 130, and 195 GAU (Glucoamylase Unit) for saccharification, respectively of enzymes were applied. The liquefaction was carried out at 90-100⁰C for 2 hours. The saccharification was executed at 65 ⁰C for 4 hours. Meanwhile, the acidic hydrolysis operating condition was at 90-100 ⁰C for 3 hours. The fermentation was performed at pH 4.5 for 3 days. Fourier Transform Infra-Red (FTIR) analysis was conducted to evaluate the hydrolysis process. The highest ethanol was yielded in the fermentation at 8.89% with the ratio of onggok to water 100:1, 67.5 KNU of alpha-amylase, and 195 GAU of glucoamylase. Ethanol was further purified utilizing fractional distillation. The final ethanol concentration was at 93-94%.


2021 ◽  
Vol 11 (2) ◽  
pp. 385-391
Author(s):  
Marcelinus Christwardana ◽  
Athanasia Amanda Septevani ◽  
Linda Aliffia Yoshi

Photosynthesis is a technique for converting light energy into chemical energy that is both efficient and sustainable. Chlorophyll in energy-transducing photosynthetic organisms is unique because of their distinctive structure and composition. In photo-bioelectrochemical research, the chlorophyll's quantum trapping efficiency is attractive. Chlorophyll from Spirulina platensis is demonstrated to communicate directly with TiO2-modified Indium Thin Oxide (ITO) to generate electricity without the use of any mediator. TiO2-modified ITO with a chlorophyll concentration of 100 % generated the greatest power density and photocurrent of approximately 178.15 mW/m2 and 596.92 mA/m2 from water oxidation under light among all the other materials. While the sensitivity with light was 0.885 mA/m2.lux, and Jmax value was 1085 mA/m2. Furthermore, the power and photocurrent density as a function of chlorophyll content are studied. The polarizability and Van der Waals interaction of TiO2 and chlorophyll are crucial in enhancing electron transport in photo-bioelectrochemical systems. As a result, this anode structure has the potential to be improved and used to generate even more energy.


2021 ◽  
Vol 11 (2) ◽  
pp. 393-401
Author(s):  
Youcef Belhadji

Designing thin film solar cells with high and stable output performance under different operating points remains a large area of research. In the context of Chalcopyrite-based solar cells (CuInxGa(1-x)Se2) where the buffer layer is CdS, great progress has been made but research is still underway to optimize their performance. Besides the environmental concerns and limiting factors of CdS material, the use or combination of new materials like ZnS, ZnSe and WS2 as a buffer layer is solicited. Due to these attracted optical and crystallographic properties, Tungsten Disulfide: WS2 is solicited during the last years. Through numerical simulation, we investigate in this work the dc parameters of CuInxGa(1-x)Se2/WS2 solar cell with reduced buffer layer thickness of 30 nm. Considering the presence of neutral and divalent defects in the absorber layer, simulations are performed under the impact of temperature, concentration of charge carriers in WS2 layer and light spectrum change. The divalent defects taken into account are: double donors / acceptors and amphoteric having a Gaussian distribution. For more calculation precision and in order to obtain the desired performance of the solar cell, the impact of series and shunt resistors is also considered. In comparison with results reported in previous works, carried out on the CuInxGa(1-x) Se2/WS2 solar cell, a remarkable improvement in the performance of the solar cell is achieved. When temperature increase by 10K, the short circuit current and  open circuit voltage are enhanced by ~0,05mA/cm2 and ~0,0022 respectively. The optimal values of the solar cell parameters obtained in this study are: Jsc≈ 31.0683 (mA/cm2), Voc=1.0173 (V), PCE = 26.72 % and FF=84.54%.


2021 ◽  
Vol 11 (1) ◽  
pp. 325-332
Author(s):  
Joselito Abierta Olalo

Plastics play an essential role in packaging materials because of their durability to different environmental conditions. With its importance in the community lies the problem with waste disposal. Plastic is a non-biodegradable material, making it a big problem, especially when thrown in dumpsites. In solving the plastic problem, one efficient way to reduce its volume is through thermal processing such as pyrolysis. This study used the pyrolysis method to recover energy from plastic waste. Liquid oil from plastic was comparable to regular fuel used in powering engines. Before the pyrolysis process, a 3k factorial Box-Behnken Design was used in determining the number of experiments to be used. The output oil yield in each pyrolysis runs was optimized in different parameters, such as temperature, residence time, and particle size using response surface methodology to determine the optimum oil yield.  Between polyethylene (PE), mixed plastic, and polystyrene (PS), PS produced its highest oil yield of 90 %. In comparison, mixed plastic produced only its highest oil yield of 45 % in 500 ºC temperature, 120 min residence time, and 3 cm particle size. The produced quadratic mathematical models in PE, mixed, and PS plastic were significant in which the p-values were less than 0.05. Using mathematical models, the optimum oil yield for PE (467.68 ºC, 120 min residence time, 2 cm particle size), mixed (500 ºC, 120 min residence time, 2.75 cm particle size) and PS plastic (500 ºC, 120 min residence time, 2 cm particle size) were 75.39 %, 46.74 %, and 91.38 %, respectively


2021 ◽  
Vol 11 (2) ◽  
pp. 333-346
Author(s):  
Anirbid Sircar ◽  
Krishna Solanki ◽  
Namrata Bist ◽  
Kriti Yadav

Geothermal energy plays a very important role in the energy basket of the world. However, understanding the geothermal hotspots and exploiting the same from deep reservoirs, by using advanced drilling technologies, is a key challenge. This study focuses on reservoirs at a depth greater than 3 km and temperatures more than 150°C. These resources are qualified as Enhanced Geothermal System (EGS). Artificially induced technologies are employed to enhance the reservoir permeability and fluid saturation. The present study concentrates on EGS resources, their types, technologies employed to extract energy and their applications in improving power generation. Studies on fracture stimulation using hydraulic fracturing and hydro shearing are also evaluated. The associated micro-seismic events and control measures for the same are discussed in this study. Various simulators for reservoir characterization and description are also analyzed and presented. Controlled fluid injection and super critical CO2 as heat transmission fluid are described for the benefit of the readers. The advantages of using CO2 over water and its role in reducing the carbon footprint are brought out in this paper for further studies.


Sign in / Sign up

Export Citation Format

Share Document