constraint handling
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 121)

H-INDEX

40
(FIVE YEARS 5)

Author(s):  
Magnus Nystad ◽  
Bernt Aadnoy ◽  
Alexey Pavlov

Abstract The Rate of Penetration (ROP) is one of the key parameters related to the efficiency of the drilling process. Within the confines of operational limits, the drilling parameters affecting the ROP should be optimized to drill more efficiently and safely, to reduce the overall cost of constructing the well. In this study, a data-driven optimization method called Extremum Seeking (ES) is employed to automatically find and maintain the optimal Weight on Bit (WOB) which maximizes the ROP. The ES algorithm is a model-free method which gathers information about the current downhole conditions by automatically performing small tests with the WOB and executing optimization actions based on the test results. In this paper, this optimization method is augmented with a combination of a predictive and a reactive constraint handling technique to adhere to operational limitations. These methods of constraint handling within ES application to drilling are demonstrated for a maximal limit imposed on the surface torque, but the methods are generic and can be applied on various drilling parameters. The proposed optimization scheme has been tested with experiments on a downscaled drilling rig and simulations on a high-fidelity drilling simulator of a full-scale drilling operation. The experiments and simulations show the method's ability to steer the system to the optimum and to handle constraints and noisy data, resulting in safe and efficient drilling at high ROP.


Author(s):  
Edoardo Pasta ◽  
Nicolas Faedo ◽  
Luca Parrinello ◽  
Fabio Carapellese ◽  
John V. Ringwood ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8739
Author(s):  
José Saúl Muñoz-Reina ◽  
Miguel Gabriel Villarreal-Cervantes ◽  
Leonel Germán Corona-Ramírez

Currently, rehabilitation systems with closed kinematic chain mechanisms are low-cost alternatives for treatment and health care. In designing these systems, the dimensional synthesis is commonly stated as a constrained optimization problem to achieve repetitive rehabilitation movements, and metaheuristic algorithms for constrained problems are promising methods for searching solutions in the complex search space. The Constraint Handling Techniques (CHTs) in metaheuristic algorithms have different capacities to explore and exploit the search space. However, the study of the relationship in the CHT performance of the mechanism dimensional synthesis for rehabilitation systems has not been addressed, resulting in an important gap in the literature of such problems. In this paper, we present a comparative empirical study to investigate the influence of four CHTs (penalty function, feasibility rules, stochastic-ranking, and ϵ-constraint) on the performance of ten representative algorithms that have been reported in the literature for solving mechanism synthesis for rehabilitation (four-bar linkage, eight-bar linkage, and cam-linkage mechanisms). The study involves analysis of the overall performance, six performance metrics, and evaluation of the obtained mechanism. This identified that feasibility rules usually led to efficient optimization for most analyzed algorithms and presented more consistency of the obtained results in these kinds of problems.


Sign in / Sign up

Export Citation Format

Share Document