3-D stress intensity factors for arrays of inner radial lunular or crescentic cracks in thin and thick spherical pressure vessels

2011 ◽  
Vol 78 (7) ◽  
pp. 1466-1477 ◽  
Author(s):  
M. Perl ◽  
V. Bernshtein
Author(s):  
M. Perl ◽  
V. Bernstein

Some spherical pressure vessels are manufactured by methods such as the Integrated Hydro-Bulge Forming (IHBF) method, where the sphere is composed of a series of double curved petals welded along their meridional lines. Such vessels are susceptible to multiple radial cracking along the welds. For fatigue life assessment and fracture endurance of such vessels one needs to evaluate the Stress Intensity Factors (SIF) distribution along the fronts of these cracks. However, to date, only one 3-D solution for the SIF for a circumferential crack in a thick sphere is available, as well as 2-D SIFs for one through the thickness crack in thin spherical shells. In the present paper, mode I SIF distributions for a wide range of lunular and crescentic cracks are evaluated. The 3-D analysis is performed, via the FE method employing singular elements along the crack front, for five geometries representing thin, moderately thick, and thick spherical pressure vessels with outer to inner radius ratios of η = Ro/Ri = 1.01, 1.05, 1.1, 1.7, and 2.0. SIFs are evaluated for arrays containing n = 1–20 cracks; for a wide range of crack depth to wall thickness ratio, a/t, from 0.025 to 0.95; and for various ellipticities of the crack, i.e., the ratio of crack depth to semi crack length, a/c, from 0.2 to 1.5. The obtained results clearly indicate that the SIFs are considerably affected by the three-dimensionality of the problem and by the following parameters: the geometry of the sphere-η, the number of cracks in the array-n, the depth of the cracks-a/t, and their ellipticity-a/c.


Author(s):  
M. Perl ◽  
V. Bernstein

Some spherical pressure vessels are manufactured by methods such as the Integrated Hydro-Bulge Forming (IHBF) method, where the sphere is composed of a series of double curved petals welded along their meridional lines. Such vessels are susceptible to multiple radial cracking along the welds. For fatigue life assessment and fracture endurance of such vessels one needs to evaluate the Stress Intensity Factors SIF distribution along the fronts of these cracks. However, to date, only two-dimensional SIFs for one through the thickness crack in a thin spherical shells is available. In the present paper, mode I SIF distributions for a wide range of lunular and crescentic cracks are evaluated. The 3-D analysis is performed, via the FE method employing singular elements along the crack front, for three sphere geometries with outer to inner radius ratios of η = Ro/Ri = 1.1, 1.7, and 2.0. SIFs are evaluated for arrays containing n = 1–20 cracks,; for a wide range of crack depth to wall thickness ratio, a/t, from 0.025 to 0.8; and for various ellipticities of the crack, i.e., the ratio of crack depth to semi crack length, a/c, from 0.2 to 1.5. The obtained results clearly indicate that the SIFs are considerably affected by the three-dimensionality of the problem and by the geometrical parameters: the geometry of the sphere – η, the number of cracks in the array – n, the depth of the crack – a/t, and its ellipticity – a/c.


1982 ◽  
Vol 104 (4) ◽  
pp. 299-307 ◽  
Author(s):  
T. Nishioka ◽  
S. N. Atluri

An alternating method, in conjunction with the finite element method and a newly developed analytical solution for an elliptical crack in an infinite solid, is used to determine stress intensity factors for semi-elliptical surface flaws in cylindrical pressure vessels. The present finite element alternating method leads to a very inexpensive procedure for routine evaluation of accurate stress intensity factors for flawed pressure vessels. The problems considered in the present paper are: (i) an outer semi-elliptical surface crack in a thick cylinder, and (ii) inner semi-elliptical surface cracks in a thin cylinder which were recommended for analysis by the ASME Boiler and Pressure Vessel Code (Section III, App. G, 1977). For each crack geometry of an inner surface crack, seven independent loadings, such as internal pressure loading on the cylinder surface and polynomial pressure loadings from constant to fifth order on the crack surface, are considered. From the analyses of these loadings, the magnification factors for the internal pressure loading and the polynomial influence functions for the polynomial crack surface loadings are determined. By the method of superposition, the magnification factors for internally pressurized cylinders are rederived by using the polynomial influence functions to check the internal consistency of the present analysis. These values agree excellently with the magnification factors obtained directly. The present results are also compared with the results available in literature.


Sign in / Sign up

Export Citation Format

Share Document