geometrical parameters
Recently Published Documents


TOTAL DOCUMENTS

3751
(FIVE YEARS 1238)

H-INDEX

55
(FIVE YEARS 12)

2022 ◽  
Vol 24 (4) ◽  
pp. 46-52
Author(s):  
Anatoly M. Bobreshov ◽  
Aleksey E. Elfimov ◽  
Vladislav A. Stepkin ◽  
Grigoriy K. Uskov

In this work the possibility of increasing the amplitude of ultra-short pulses and formation of a monocycle Gaussian by adding signals from several oscillators was investigated. For this purpose, the ring adders of Wilkinson design were used. The design of which has been chosen due to low losses and high input decoupling. The S-parameters of the adders with different geometrical parameters have been simulated in the frequency band up to 5 GHz. The obtained results coincided with the experimentally measured characteristics. The monopulse amplitude was increased and a bipolar pulse shape was formed by adding ultrashort pulses of equal and different polarities using the adders. This approach allows you to adjust the parameters of the output signal by adjusting the delays of the triggering signals.


Author(s):  
Seyed Ehsan Hosseini ◽  
Amir Keshmiri

Abstract Purpose Due to the importance of public health and economics, cardiovascular disease has become one of the most important debates and challenges for scientists. However, few studies have been done to address this challenge. The main objective of this document is to provide an optimal model to improve the performance of the left ventricular assist device and reduce costs. In this way, in the present study, the experimental and numerical procedures were developed to analyze the effects of the geometrical features and operational parameters on the performance of a centrifugal blood pump (CBP). Methods In order to achieve this aim, first, experimental tests were carried out to study the influence of the working fluid temperature and the rotational speed on the CBP. Subsequently, the performance of the CBP was assessed using computational fluid dynamics (CFD), and comparison was made against the experimental data. In addition, the influence of mounting an inducer on the overall performance of CBP was also investigated. Results Good agreement between the CFD and the data was obtained. The CFD results showed that increasing the fluid temperature and rotational speed leads to an increase in the hydraulic efficiency, pressure difference, and power. In addition, the reduction of the pressure difference and hydraulic efficiency with increasing the surface roughness was observed. While mounting an inducer on the pump did not significantly impact its overall performance, the highest value of the wall shear stress dropped moderately on the impeller and, therefore, unveiled the possibility of improving the performance of such designs.


2022 ◽  
Author(s):  
A.S. Agrawal ◽  
S K Tripathy ◽  
Sarmistha Pal ◽  
B Mishra

Abstract In this work, we have studied some bouncing cosmologies in the frame work of $f(R,T)$ gravity. The bouncing scenario has been formulated to avoid the big bang singularity. The physical and geometrical parameters are investigated. The effect of the extended gravity theory on the dynamical parameters of the model is investigated. It is found that, the $f(R,T)$ gravity parameter affects the cosmic dynamics substantially. We have also, tested the model through the calculation of the cosmographic coefficients and the $Om(z)$ parameter. A scalar field reconstruction of the bouncing scenario is also carried out. The stability of the model are tested under linear, homogeneous and isotropic perturbations.


Author(s):  
Mohamed Said Abbas ◽  
Antonin Fabbri ◽  
Mohammed Yacine Ferroukhi ◽  
Philippe Glé ◽  
Emmanuel Gourdon ◽  
...  

Bio-based materials are an environmentally friendly alternative to classic construction materials, yet their generally low density can lead to poor acoustic properties. The acoustic performance of hemp shiv and sunflower pith composites is therefore analyzed using Kundt’s tube. Although the loose aggregates present an exceptional sound absorbing behavior, it can be notably worsened in the presence of certain binders. The Transmission Loss is nevertheless enhanced by the binders, although it does not exceed 20 dB in most cases. For both properties, the type of binder has been found to be the most influential parameter. Through the Kundt’s tube method, it is also possible to determine the geometrical parameters of the composites’ microstructure, which have been observed to be similar for materials presenting comparable hygrothermal properties and containing the same binder. In a previous work, an experimental correlation was found between the thermal conductivity and the interparticle porosity of the aforementioned composites, which is compared to theoretical thermal conductivity models from literature without finding any apparent correspondence.


2022 ◽  
Vol 23 (2) ◽  
pp. 621
Author(s):  
Marine Lebel ◽  
Thibaut Very ◽  
Eric Gloaguen ◽  
Benjamin Tardivel ◽  
Michel Mons ◽  
...  

The present benchmark calculations testify to the validity of time-dependent density functional theory (TD-DFT) when exploring the low-lying excited states potential energy surfaces of models of phenylalanine protein chains. Among three functionals suitable for systems exhibiting charge-transfer excited states, LC-ωPBE, CAM-B3LYP, and ωB97X-D, which were tested on a reference peptide system, we selected the ωB97X-D functional, which gave the best results compared to the approximate coupled-cluster singles and doubles (CC2) method. A quantitative agreement for both the geometrical parameters and the vibrational frequencies was obtained for the lowest singlet excited state (a ππ* state) of the series of capped peptides. In contrast, only a qualitative agreement was met for the corresponding adiabatic zero-point vibrational energy (ZPVE)-corrected excitation energies. Two composite protocols combining CC2 and DFT/TD-DFT methods were then developed to improve these calculations. Both protocols substantially reduced the error compared to CC2 and experiment, and the best of both even led to results of CC2 quality at a lower cost, thus providing a reliable alternative to this method for very large systems.


Author(s):  
Weigang Fu ◽  
Bin Wang

Perforated plates are widely used in thin-walled engineering structures, for example, for lightweight designs of structures and access for installation. For the purpose of analysis, such perforated plates with two opposite free edges might be considered as a series of successive Timoshenko beams. A new semi-analytical model was developed in this study using the Timoshenko shear beam theory for the critical buckling load of perforated plates, with the characteristic equations derived. Results of the proposed modelling were compared with those obtained by FEM and show good agreement. The influence of the dividing number of the successive beams on the accuracy of the critical buckling load was studied with respect to various boundary conditions. And the effect of geometrical parameters, such as the aspect ratio, the thickness-to-width ratio and the cutout-to-width ratio were also investigated. The study shows that the proposed semi-analytical model can be used for buckling analysis of a perforated plate with opposite free edges with the capacity to consider the shear effect in thick plates.


2022 ◽  
Vol 17 ◽  
pp. 1-15
Author(s):  
G. Vasudeva ◽  
B. V. Uma

Successive Approximation Register (SAR) Analog to Digital Converter (ADC) architecture comprises of sub modules such as comparator, Digital to Analog Converter and SAR logic. Each of these modules imposes challenges as the signal makes transition from analog to digital and vice-versa. Design strategies for optimum design of circuits considering 22nm FinFET technology meeting area, timing, power requirements and ADC metrics is presented in this work. Operational Transconductance Amplifier (OTA) based comparator, 12-bit two stage segmented resistive string DAC architecture and low power SAR logic is designed and integrated to form the ADC architecture with maximum sampling rate of 1 GS/s. Circuit schematic is captured in Cadence environment with optimum geometrical parameters and performance metrics of the proposed ADC is evaluated in MATLAB environment. Differential Non Linearity and Integral Non Linearity metrics for the 12-bit ADC is limited to +1.15/-1 LSB and +1.22/-0.69 LSB respectively. ENOB of 10.1663 with SNR of 62.9613 dB is achieved for the designed ADC measured for conversion of input signal of 100 MHz with 20dB noise. ADC with sampling frequency upto 1 GSps is designed in this work with low power dissipation less than 10 mW.


2022 ◽  
Author(s):  
Siti Rohimah ◽  
He Tian ◽  
Jinfang Wang ◽  
Jianfeng Chen ◽  
Jina Li ◽  
...  

Abstract A plasmonic structure of metal-insulator-metal (MIM) waveguide consisting of a single baffle waveguide and an r-shaped resonator is designed to produce Fano resonance. The finite element method uses the finite element method to analyze the transmission characteristics and magnetic field distributions of the plasmonic waveguide distributions. The simulation results exhibit two Fano resonances that can be achieved by the interference between a continuum state in the baffle waveguide and a discrete state in the r-shaped resonator. The Fano resonances can be simply tuned by changing geometrical parameters of the plasmonic structure. The value variations of geometrical parameters have different effects on sensitivity. Thus, the sensitivity of the plasmonic structure can achieve 1333 nm/RIU, with a figure of merit of 5876. The results of the designed plasmonic structure offer high sensitivity and nano-scale integration, which are beneficial to refractive index sensors, photonic devices at the chip nano-sensors, and biosensors applications.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 15-19
Author(s):  
A. N. Ponyavina ◽  
K. A. Barbarchyk ◽  
A. D. Zamkovets ◽  
S. A. Tikhomirov

To model spectral characteristics of hybrid metal-organic nanostructures, the extended Mie theory was used, which makes it possible to calculate the extinction efficiency factor (Qext) and the scattering efficiency factor in the near zone (QNF) of two-layer spherical particles placed in an absorbing matrix. Two-layer plasmon nanospheres consisting of a metallic core (Ag, Cu) coated with dielectric shells and located into the copper phthalocyanine (CuPc) matrix were considered. The influence of dielectric shell thickness and refractive index on the characteristics of the surface plasmon resonance of absorption (SPRA) was studied. The possibility of the SPRA band tuning by changing the optical and geometrical parameters of dielectric shells was shown. It was established that dielectric shells allow to shift the surface plasmon resonance band of plasmonic  nanoparticles absorption both  to  short-  and  long-wavelength  spectral  range  depending on the relation between shell and matrix refractive indexes.


Sign in / Sign up

Export Citation Format

Share Document