Reliability-based resistance of RC element subjected to membrane action and their sensitivity to uncertainties

2021 ◽  
Vol 238 ◽  
pp. 112259
Author(s):  
Wouter Botte ◽  
Didier Droogné ◽  
Robby Caspeele
Keyword(s):  
1966 ◽  
Vol 183 (1) ◽  
pp. 152-166 ◽  
Author(s):  
B. Frankenhaeuser ◽  
B. D. Lindley ◽  
R. S. Smith

2012 ◽  
Vol 238 ◽  
pp. 621-624 ◽  
Author(s):  
Guang Yong Wang ◽  
Xing Qiang Wang ◽  
Guang Wei Liu

A fire performance finite element (FE) model of space grid structures in fire and after fire is proposed, and deformation, stress redistribution, failure modes of grid structures are also studied. The result shows that tensile membrane action arises when the grid is loaded after fire, and the load bearing capacity after fire is reduced by fire damage.


2021 ◽  
Author(s):  
Eva O. L. Lantsoght ◽  
Cor van der Veen ◽  
Rutger Koekkoek ◽  
Henk Sliedrecht

<p>In The Netherlands, existing slab-between-girder bridges with prestressed girders and thin transversely prestressed concrete decks require assessment. The punching capacity was studied in a previous series of experiments, showing a higher capacity thanks to compressive membrane action in the deck. Then, concerns were raised with regard to fatigue loading. To address this, two series of large-scale experiments were carried out, varying the number of loads (single wheel print versus double wheel print), the loading sequence (constant amplitude versus variable amplitude, and different loading sequences for variable amplitude), and the distance between the prestressing ducts. An S-N curve is developed for the assessment of slab-between-girder bridges. The experiments showed that compressive membrane actions enhances the capacity of thin transversely prestressed decks subjected to fatigue loading.</p>


2010 ◽  
Vol 54 (8) ◽  
pp. 673-681 ◽  
Author(s):  
Ana Luiza R. Rolim ◽  
Susan C. Lindsey ◽  
Ilda S. Kunii ◽  
Aline M. Fujikawa ◽  
Fernando A. Soares ◽  
...  

Ion channels serve diverse cellular functions, mainly in cell signal transduction. In endocrine cells, these channels play a major role in hormonal secretion, Ca2+-mediated cell signaling, transepithelial transport, cell motility and growth, volume regulation and cellular ionic content and acidification of lysosomal compartments. Ion channel dysfunction can cause endocrine disorders or endocrine-related manifestations, such as pseudohypoaldosteronism type 1, Liddle syndrome, Bartter syndrome, persistent hyperinsulinemic hypoglycemia of infancy, neonatal diabetes mellitus, cystic fibrosis, Dent's disease, hypomagnesemia with secondary hipocalcemia, nephrogenic diabetes insipidus and, the most recently genetically identified channelopathy, thyrotoxic hypokalemic periodic paralysis. This review briefly recapitulates the membrane action potential in endocrine cells and offers a short overview of known endocrine channelopathies with focus on recent progress regarding the pathophysiological mechanisms and functional genetic defects.


Sign in / Sign up

Export Citation Format

Share Document