fire performance
Recently Published Documents


TOTAL DOCUMENTS

758
(FIVE YEARS 199)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 171 ◽  
pp. 108733
Author(s):  
Shuna Ni ◽  
Xia Yan ◽  
Matthew S. Hoehler ◽  
Thomas Gernay

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irindu Upasiri ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara ◽  
Keerthan Poologanathan ◽  
Gatheeshgar Perampalam ◽  
...  

PurposeLight-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel lipped channel sections negative fire performance, cavity insulation materials are utilized in the LSF configuration to enhance its fire performance. The applicability of lightweight concrete filling as cavity insulation in LSF and its effect on the fire performance of LSF are investigated under realistic design fire exposure, and results are compared with standard fire exposure.Design/methodology/approachA Finite Element model (FEM) was developed to simulate the fire performance of Light Gauge Steel Frame (LSF) walls exposed to realistic design fires. The model was developed utilising Abaqus subroutine to incorporate temperature-dependent properties of the material based on the heating and cooling phases of the realistic design fire temperature. The developed model was validated with the available experimental results and incorporated into a parametric study to evaluate the fire performance of conventional LSF walls compared to LSF walls with lightweight concrete filling under standard and realistic fire exposures.FindingsNovel FEM was developed incorporating temperature and phase (heating and cooling) dependent material properties in simulating the fire performance of structures exposed to realistic design fires. The validated FEM was utilised in the parametric study, and results exhibited that the LSF walls with lightweight concrete have shown better fire performance under insulation and load-bearing criteria in Eurocode parametric fire exposure. Foamed Concrete (FC) of 1,000 kg/m3 density showed best fire performance among lightweight concrete filling, followed by FC of 650 kg/m3 and Autoclaved Aerated Concrete (AAC) 600 kg/m3.Research limitations/implicationsThe developed FEM is capable of investigating the insulation and load-bearing fire ratings of LSF walls. However, with the availability of the elevated temperature mechanical properties of the LSF wall, materials developed model could be further extended to simulate the complete fire behaviour.Practical implicationsLSF structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel-lipped channel sections negative fire performance, cavity insulation materials are utilised in the LSF configuration to enhance its fire performance. The lightweight concrete filling in LSF is a novel idea that could be practically implemented in the construction, which would enhance both fire performance and the mechanical performance of LSF walls.Originality/valueLimited studies have investigated the fire performance of structural elements exposed to realistic design fires. Numerical models developed in those studies have considered a similar approach as models developed to simulate standard fire exposure. However, due to the heating phase and the cooling phase of the realistic design fires, the numerical model should incorporate both temperature and phase (heating and cooling phase) dependent properties, which was incorporated in this study and validated with the experimental results. Further lightweight concrete filling in LSF is a novel technique in which fire performance was investigated in this study.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oluwamuyiwa Okunrounmu ◽  
Osama (Sam) Salem ◽  
George Hadjisophocleous

PurposeThe fire resistance of timber structures is heavily dependent on the fire behaviour of the connections between its structural elements. The experimental study presented in this paper aimed to investigate the fire performance of glued-laminated timber beam connections reinforced perpendicular-to-wood grain with self-tapping screws (STS).Design/methodology/approachTwo full-size fire experiments were conducted on glulam beam-end connections loaded in flexure bending. Two connection configurations, each utilizing four steel bolts arranged in two different patterns, were reinforced perpendicular to wood grain using STS. The bolt heads and nuts and the steel plate top and bottom edges were fire protected using wood plugs and strips, respectively. Each connection configuration was loaded to 100% of the ultimate design load of the weakest unreinforced configuration. The test assemblies were exposed to elevated temperatures that followed the CAN/ULC-S101 standard fire time–temperature curve.FindingsThe experimental results show that the influence of the STS was significant as it prevented the occurrence of wood splitting and row shear-out and as a result, increased the fire resistance time of the connections. The time to failure of both connection configurations exceeded the minimum fire resistance rating specified as 45 min for combustible construction in applicable building codes.Originality/valueThe experimental data show the effectiveness of a simple fire protection system (i.e. wood plugs and strips) along with the utilization of STS on the rotational behaviour, charring rate, fire resistance time and failure mode of the proposed hybrid mass timber beam-end connection configurations.


2022 ◽  
Vol 10 (5) ◽  
pp. 1201-1220
Author(s):  
Bing Zhang ◽  
Sujie Yang ◽  
Mengru Liu ◽  
Panyue Wen ◽  
Xiuyu Liu ◽  
...  

2022 ◽  
Vol 25 ◽  
Author(s):  
Letícia Heldt Rabelo ◽  
Rodrigo Amorim Munhoz ◽  
Juliano Marini ◽  
Sylma Carvalho Maestrelli

2021 ◽  
pp. 073490412110620
Author(s):  
Angeline Paturel ◽  
Mathilde Casetta ◽  
Stijn Rambour ◽  
Ludovic Janus ◽  
Sophie Duquesne

Artificial turf structures are increasingly used in closed areas and have to comply with the European fire standard for building products (EN ISO 13501-1). The main test to evaluate the fire performance of flooring products is the EN ISO 9239-1 radiant panel test. The test principle is to determine the critical heat flux of floorings exposed to a forced ignition and a specific heat flux profile. As large amounts of material are needed to perform the test, the development of a radiant panel test at reduced scale was considered. The experimental design methodology was implemented to mimic the heat flux profile. The fire performance of artificial turf structures was evaluated at both scales and the results were compared. The burnt lengths of the specimens and thus the critical heat flux are similar for both scales. Thus, the downscaled device could advantageously be used for high throughput development of artificial turf structures.


2021 ◽  
Author(s):  
Laura Schmidt ◽  
Rory M. Hadden ◽  
José L. Torero ◽  
Dilum Fernando

Sign in / Sign up

Export Citation Format

Share Document