Contribution of climate and land cover changes to reduction in soil erosion rates within small cultivated catchments in the eastern part of the Russian Plain during the last 60 years

2018 ◽  
Vol 167 ◽  
pp. 21-33 ◽  
Author(s):  
Artem V. Gusarov ◽  
Valentin N. Golosov ◽  
Aidar G. Sharifullin
2020 ◽  
Vol 45 (3) ◽  
pp. 707-722 ◽  
Author(s):  
Pengfei Li ◽  
Yuzhe Zang ◽  
Doudou Ma ◽  
Wanqiang Yao ◽  
Joseph Holden ◽  
...  

2021 ◽  
Author(s):  
Hadi Eskandari Damaneh ◽  
Hassan Khosravi ◽  
Khalil Habashi ◽  
Hamed Eskandari Damaneh ◽  
John P. Tiefenbacher

Abstract Estimates of long-term change and land cover changes using satellite imagery update data about effects erosion on the destruction. This is relevant on semi-arid land where soil resources are scarce, and proper management requires matching LULC to the conditions to achieve sustainability. This study evaluates the impact of LULC changes on soil erosion using Landsat satellite images and the RUSLE model on plains around the Jarahi River and Shadegan International Wetlands. The maps of LULC were prepared with supervised classification and maximum-likelihood methods applied to pre-processed TM, ETM, and OLI images for 1989, 2003, and 2017. This study investigated the impacts of LULC changes on soil erosion. Based on the results, we observe that an assessment of LULC changes from 1989 to 2003 revealed diminishing bare land and wetland vegetation with increases in agricultural land and water features. The areas of agricultural lands and wetlands decreased from 2003 to 2017, while bare lands increased in the area. The areas with soil erosion rates < 1 Mg ha-1 y-1 have diminished, and areas having rates >1 Mg ha-1 y-1 increased in extent. We conclude that LULC changes led to increased soil erosion in Shadegan International Wetlands. Our study highlights the need to plan LULC changes to reduce soil erosion rates to achieve sustainable management. We argue that nature-based solutions can effectively reduce soil losses.


2018 ◽  
Vol 29 (8) ◽  
pp. 2658-2667 ◽  
Author(s):  
Valentin Golosov ◽  
Oleg Yermolaev ◽  
Leonid Litvin ◽  
Nelli Chizhikova ◽  
Zoya Kiryukhina ◽  
...  

2014 ◽  
Vol 11 (3) ◽  
pp. 3675-3710 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.


2013 ◽  
Vol 10 (7) ◽  
pp. 9505-9531 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
C. Alewell

Abstract. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.


Author(s):  
Valentin Golosov ◽  
Artem Gusarov ◽  
Leonid Litvin ◽  
Oleg Yermolaev ◽  
Nelly Chizhikova ◽  
...  

Abstract. The Russian Plain (RP) is divided into two principally different parts. The northern half of the RP is a predominantly forested area with a low proportion of arable fields. In contrast, the southern half of the RP has a very high proportion of arable land. During the last 30 years, this agricultural region of the RP has experienced considerable land use transformation and changes in precipitation due to climate change have altered soil erosion rates. This paper describes the use of erosion model calculations and GIS spatial analytical methods for the evaluation of trends in erosion rates in the RP. Climate change (RIHMI World Data Center, 2016), land use transformation and crop rotation modification (Rosstat, 2016; R Core Team, 2016) are the main factors governing erosion rates in the region during recent decades. It was determined that mean annual erosion rates have decreased from 7.3 to 4.1 t ha−1 yr−1 in the forest zone mostly because of the serious reduction in the surface runoff coefficient for periods of snowmelt. At the same time, the erosion rates have increased from 3.9 to 4.6 t ha−1 yr−1 in the steppe zone due to the increasing frequency of heavy rain-storms.


2021 ◽  
Vol 34 (1) ◽  
pp. 90-98
Author(s):  
GUILHERME HENRIQUE EXPEDITO LENSE ◽  
TAYA CRISTO PARREIRAS ◽  
RODRIGO SANTOS MOREIRA ◽  
JUNIOR CESAR AVANZI ◽  
RONALDO LUIZ MINCATO

ABSTRACT Land use and land cover changes are the main factors of human influence on the erosive process. Thus, this work aimed to evaluate the effect of land use and land cover changes over 30 years on water erosion in a tropical subbasin in southeastern Brazil. The hypothesis was tested that the expansion of coffee and reforestation areas decreased soil losses due to water erosion. The Potential Erosion Method (EPM) was used to estimate water erosion in 1988, 1998, 2008 and 2018. In the first two decades, the predominant land use in the subbasin was corn, while in 2008 and 2018, coffee and reforestation areas became the main land use class in the area. The acquisition of EPM input parameters and data analysis was performed using remote sensing techniques and the Geographic Information System. Between 1988 and 1998, the total soil loss increased by 50.36 Mg year-1 due to the conversion of pasturelands to coffee plantations and the increase of deforestation. However, between 1998 and 2018, there was a soil loss reduction of 660.21 Mg year-1 (-37.46%), once the conversion of pasture and corn areas to coffee with the adoption of conservation practices, and the expansion of reforestation areas among 1988 - 2018, contributed to the decrease of soil erosion rates.


Sign in / Sign up

Export Citation Format

Share Document